

Universidade Estadual de Maringá Centro de Tecnologia Departamento de Informática Curso de Engenharia de Produção

Ociosidade e Eficiência do Processo: análise de seus impactos na produtividade em uma indústria de embalagens plásticas.

Alexandre Antonio Falleiro Moretto

TCC-EP-02-2007

Universidade Estadual de Maringá Centro de Tecnologia Departamento de Informática Curso de Engenharia de Produção

Ociosidade e Eficiência do Processo: análise de seus impactos na produtividade em uma indústria de embalagens plásticas.

Alexandre Antonio Falleiro Moretto

TCC-EP-02-2007

Trabalho de Conclusão de Curso apresentado ao Curso de Engenharia de Produção, do Centro de Tecnologia, da Universidade Estadual de Maringá.

Orientadora: Professora MSc. Maria de Lourdes Santiago Luz

Alexandre Antonio Falleiro Moretto

Ociosidade e	Eficiência de	Processo	: análise de	seus	impactos	na
produtivi	idade em um	a indústria	de embalag	jens p	lásticas.	

Este exemplar corresponde à redação final do Trabalho de Conclusão de Curso aprovado como requisito parcial para obtenção do grau de Bacharel em Engenharia de Produção da Universidade Estadual de Maringá, pela comissão formada pelos professores:

Orientador(a): Prof (a). MSc Maria de Lourdes Santiago Luz Departamento de Informática, CTC

Prof (a). MSc Daily Morales Departamento de Informática, CTC

DEDICATÓRIA

Dedico este trabalho a Deus, Senhor da minha vida, por ser meu alicerce e razão da minha existência. Toda dedicação a Ele.

AGRADECIMENTOS

A Deus, pela vida com saúde e sabedoria.

Aos meus pais, Antonio Moretto Filho e Alzira Falleiro Moretto, por terem me transmitido os valores que mais prezo e que me servem de base para ser o que sou hoje.

À minha irmã, Antonelle Falleiro Moretto, pelo companheirismo, paciência e compreensão que contribuíram para a formação do meu caráter.

A Srta. Regiane Cremonizi pela cumplicidade, paciência, apoio e estímulo incondicional às minhas decisões e que certamente seguirá compartilhando comigo todos os momentos felizes de minha vida, como este.

A professora MSc. Maria de Lourdes Santiago Luz pela orientação e dedicação que contribuíram para a realização deste trabalho.

Aos amigos Eriston Paixão, Juliana Marconato, Wesley e Wellington Maciel um agradecimento especial à nossa amizade, por tudo o que já vivemos e temos vivido, pelo companheirismo tanto nos momentos de dificuldade quanto nos momentos de lazer. Obrigado por tudo e sempre contem comigo.

Aos fiéis companheiros Renan Falleiro (Rêna), Fabrício Belincanta (Burns), Marlon Nery (Chassi), Mauricio Ziemann (Pomba), Ricardo Borges (Latino), Victor Paim (Urso) pelo compartilhamento de conhecimento e o incentivo a seguir em frente e não desistir da jornada.

Aos diretores, gestores e companheiros de trabalho das companhias por onde trabalhei durante o período de graduação que contribuíram para a formação de meus valores pessoais e profissionais.

Aos professores das disciplinas do curso de graduação pela competência e incentivos.

Por fim, agradeço a Universidade Estadual de Maringá pela oportunidade a mim concedida quanto ao desenvolvimento profissional e pessoal.

RESUMO

Considerando a produtividade um fator chave para o sucesso de uma organização, a busca por melhores resultados deste índice aumenta e, com isso, destacam-se as necessidades de análise, controle e monitoramento dos processos. Sendo assim, é esperado por parte dos responsáveis estudos a fim de identificar, analisar e minimizar a influência de fatores que venham interferir nos resultados esperados. Uma análise da ociosidade de equipamento num setor produtivo pode resultar numa avaliação adequada da capacidade, com o intuito de se optar por uma reestruturação da capacidade instalada ou por desenvolvimento de novos projetos, diminuindo o tempo de parada das máquinas por falta de pedidos. Quando analisada a eficiência do processo, torna-se possível identificar os pontos críticos que resultam em ineficiência, fazendo com que os esforços sejam empregados na solução dos problemas com maior impacto na produtividade. A análise destes dois fatores com o intuito de observar o impacto no desempenho da produtividade está contida no trabalho em questão, realizado em uma indústria de embalagens plásticas. Analisando os dados do ano de 2006, foi possível observar o impacto financeiro da ociosidade nos setores de sopro e injeção. Em relação à eficiência, foram observados os resultados conforme metodologia utilizada na empresa e comparados com os resultados obtidos após uma análise dos mesmos, sob o ponto de vista da eficiência global de equipamentos (OEE). Com base no dimensionamento correto da capacidade, a empresa iniciou estudos sobre a modernização de equipamentos no setor de sopro visando o aumento do nível de utilização e reduzindo a ociosidade. Após a comparação dos métodos de obtenção da eficiência, foi atingido o objetivo de apresentar um índice de eficiência mais completo, viabilizando a tomada de ações nos pontos de ineficiência, relacionados à disponibilidade, performance e qualidade.

Palavras-chave: Produtividade. Ociosidade. Eficiência. Capacidade. OEE.

SUMÁRIO

AGRADECIMENTOS	
RES UMO	V
SUMÁRIO	VI
LISTA DE ILUSTRAÇÕES	
LISTA DE TABELAS	Х
LISTA DE TABELAS	Х
LISTA DE ABREVIATURAS E SIGLAS	X
1 INTRODUÇÃO	1
1.1 OBJETIVOS	
2 A PRODUTIVIDADE	
 2.1 DEFINIÇÕES 2.2 MEDIÇÃO DO DESEMPENHO 2.3 ÁREAS DE DECISÃO NA PRODUÇÃO 2.4 INDICADORES DE DESEMPENHO 	
3 OCIOSIDADE	
3.1 CAPACIDADE	
4 EFICIÊNCIA DO PROCESSO	ERRO! INDICADOR NÃO DEFINIDO
4.1 EFICIÊNCIA GLOBAL DE EQUIPAMENTO (OEE)	
5 ESTUDO DE CASO	2
5.1 CARACTERIZAÇÃO DO ESTUDO 5.2 DADOS COLETADOS 5.2.1 Análise da produtividade 5.2.2 Análise da eficiência 5.3 MODELO PROPOSTO 5.3.1 Análise da ociosidade 5.3.2 Análise da OEE 5.3.3 Considerações finais	22 24 24 25 31 31 32 33
6 CONCLUSÃO	48
REFERÊNCIAS	4
BIBLIOGRAFIA	50
APÊNDICE A – DADOS COLETADOS: PARADAS DE MÁC	QUINA5
ANEXO A – ORGANOGRAMA GERAL DA EMPRESA	6

	viii
ANEXO B – LISTA DE EQUIPAMENTOS	66
ANEXO C – EXEMPLO DA PLANILHA DE PRODUTIVIDADE DIÁRIA	68
GLOSSÁRIO	70

LISTA DE ILUSTRAÇÕES

FIGURA	
FIGURA 1: VISÃO GERAL DA MEDIDA DA CAPACIDADE	10
FIGURA 2: ESQUEMA DE OBTENÇÃO DO ÍNDICE OEE E SEUS FATORES	18
FIGURA 3: VISUALIZANDO AS FÓRMULAS DA OEE E TEEP	20
QUADROS	
QUADRO 1 - DESCRIÇÃO DOS CRITÉRIOS DE DESEMPENHO	
QUADRO 2 - DESCRIÇÃO DAS ÁREAS DE DECISÃO NA PRODUÇÃO	
QUADRO 3 – EXEMPLOS DE EVENTOS QUE AFET AM O ÍNDICE DE DISPONIBILIDADE	
QUADRO 4 – EXEMPLOS DE EVENTOS QUE AFET AM O ÍNDICE DE PERFORMANCE	1′
QUADRO 5 – EXEMPLOS DE EVENTOS QUE AFET AM O ÍNDICE DE QUALIDADE	1°
Gráficos	
GRÁFICO 1: ANÁLISE DE PARETO NO SETOR DE SOPRO	
CDÁCICO 2. A NÁLICE DE DADETO NO CETOD DE INICCÃO	2.

LISTA DE TABELAS

TABELA 1: FATORES OBJETIVOS DA CLASSE MUNDIAL	19
TABELA 2: PRODUTIVIDADE NO SET OR DE SOPRO	26
TABELA 3: PRODUTIVIDADE NO SET OR DE INJEÇÃO	26
TABELA 4: PRODUTIVIDADE ANUAL	27
TABELA 5: DEMONSTRATIVO DE EFICIÊNCIA NO SET OR DE SOPRO	30
TABELA 6: DEMONSTRATIVO DE EFICIÊNCIA NO SET OR DE INJEÇÃO	30
TABELA 7: DEMONSTRATIVO DE EFICIÊNCIA ANUAL	31
TABELA 8: TEMPOS (EM HORAS) DE PARADAS PLANEJADAS E OCIOSIDADE – SOPRO	33
TABELA 9: TEMPOS (EM HORAS) DE PARADAS PLANEJADAS E OCIOSIDADE – INJEÇÃO	33
TABELA 10: ANÁLISE DA OCIOSIDADE NO SET OR DE SOPRO	36
TABELA 11: ANÁLISE DA OCIOSIDADE NO SET OR DE INJEÇÃO	36
TABELA 12: ÍNDICE DE OCUPAÇÃO ANUAL	37
TABELA 13: IMPACTO DA OCIOSIDADE OBSERVADA NO SETOR DE SOPRO	38
TABELA 14: IMPACTO DA OCIOSIDADE OBSERVADA NO SETOR DE INJEÇÃO	38
TABELA 15: : ÍNDICE DE DISPONIBILIDADE NO SET OR DE SOPRO	40
TABELA 16: ÍNDICE DE DISPONIBILIDADE NO SET OR DE INJEÇÃO	40
TABELA 17: ÍNDICE DE PERFORMANCE NO SET OR DE SOPRO	41
TABELA 18: ÍNDICE DE PERFORMANCE NO SET OR DE INJEÇÃO	42
TABELA 19: ÍNDICE DE QUALIDADE NO SETOR DE SOPRO	
TABELA 20: ÍNDICE DE QUALIDADE NO SETOR DE INJEÇÃO	43
TABELA 21: ÍNDICE DE EFICIÊNCIA GLOBAL DE EQUIPAMENTO NO SET OR DE SOPRO	44
TABELA 22: ÍNDICE DE EFICIÊNCIA GLOBAL DE EQUIPAMENTO NO SET OR DE INJEÇÃO	45
TABELA 23: COMPARAÇÃO DO ÍNDICE DE EFICIÊNCIA ANTERIOR VERSUS OEE	46
TABELA 24: INDICADORES INDIVIDUAIS DO OEE X CLASSE MUNDIAL	46

LISTA DE ABREVIATURAS E SIGLAS

BLS Bureau of Labor Statistics

BVQI Bureau Veritas Quality International

ISO International Organization for Standardization, traduzido como Organização

Internacional para a Padronização.

MTBF Mean Time Between Failures, traduzido como Tempo Médio Entre Falhas.

OEE Overall Equipment Effectiveness, traduzido como Eficiência Global de

Equipamento.

PCP Planejamento e Controle da Produção

SA Social Accountability, traduzido como Responsabilidade Social.

TEEP Total Effectiveness Equipment Performance, traduzido como Produtividade

Efetiva Total de Equipamento.

TPM Total Productive Maintenance, traduzido como Manutenção Produtiva Total

1 INTRODUÇÃO

Manter uma produção ao mesmo tempo em que se diminuem os insumos ou, melhor ainda, aumentar uma produção ao mesmo tempo em que se diminui o consumo de insumos correspondem a conceitos sistemáticos de produtividade. Ou seja, obter maior produtividade com os mesmos fatores, ou menos. A mesma intenção se aplica para a manutenção, aprimoramento e/ou ampliação dos setores responsáveis pela oferta de serviços.

Numa procura quase que incessante, os gestores destas organizações buscam por melhores métodos de trabalho e processos de produção. Acima de tudo, visam a melhoria da produtividade com o menor custo possível utilizando-se de técnicas capazes de mensurar, adequadamente, as informações necessárias para identificação dos pontos críticos dos processos onde estão inseridos.

Por esta razão, a informação obtida pelos responsáveis por tomadas de decisões deve ser confiável e muito próxima da precisão.

Quando estuda-se a produtividade em uma organização, busca-se identificar, analisar e minimizar a influência de fatores que, de uma forma direta ou indireta, interferem para que algo indesejado distorça os resultados esperados. Uma análise da ociosidade num setor produtivo, por exemplo, pode resultar numa avaliação adequada da capacidade instalada de uma empresa em função da demanda prevista, possibilitando a identificação da Produtividade Efetiva Total de Equipamentos (TEEP – *Total Effectiveness Equipment Performance*).

Um outro fator que influencia diretamente o quesito produtividade corresponde à eficiência de equipamento, que afeta a eficiência do processo como um todo. Uma abordagem do ponto de vista da Eficiência Global de Equipamentos, que em inglês significa *Overall Equipment Effectiveness* (OEE), permite uma avaliação mais completa e precisa da real situação da eficiência de equipamentos de uma empresa.

Uma boa coleta de dados é um requisito chave para uma estratégia bem sucedida para o cálculo do índice OEE (HANSEN, 2006).

A análise destes dois fatores com o intuito de observar o impacto no desempenho da produtividade está contida no trabalho em questão, que será realizado em uma indústria de embalagens plásticas situada na região noroeste do Paraná, na cidade de Maringá.

Atuando no mercado de embalagens para cosméticos e perfumaria a empresa, que conta com 207 colaboradores atualmente alocados em três turnos, busca por melhorias continuamente a fim de aperfeiçoar seus processos, reduzindo custos operacionais e aumentando sua produtividade, sob regimento de diretrizes internas e das normas NBR ISO 9001:2000 e SA 8000, as quais possui certificação emitida pela *Bureau Veritas Quality International* (BVQI).

Este estudo estará restringido à análise de produção de dois setores, Sopro e Injeção, entretanto, servirá posteriormente de modelo aos outros setores da empresa.

1.1 Objetivos

Geral

Estudar a influência de fatores como a ociosidade e eficiência de equipamento no desempenho da produtividade em uma indústria de embalagens plásticas.

Específicos

Fazer um levantamento dos impactos na produtividade causados por fatores como a falta de ordens de produção para o setor produtivo que, na condição de cliente interno, sente a necessidade de tomar ações visando contribuir para uma melhor alocação de recursos e dimensionamento da capacidade instalada da empresa, bem como a otimização dos custos unitários gerados devido à ociosidade.

Uma segunda análise será realizada para mensuração da eficiência do processo, tendo como alvo a eficiência de equipamento, com o intuito de se medir um índice mais completo considerando outras variáveis como disponibilidade, performance e qualidade, e não apenas demonstrando a eficiência sobre o fator tempo. Através dos dados disponíveis dos setores de sopro e injeção, pretende-se calcular o índice OEE de cada setor e comparar com o índice existente, avaliando a dimensão e requisitos abordados na obtenção de cada um, bem como os dados que apresentam como resultados.

1.2 Estrutura do trabalho

Este trabalho encontra-se estruturado da seguinte forma:

No capítulo 1 está contida toda a introdução do trabalho, apresentando uma prévia dos temas abordados, bem como os objetivos e a sua estrutura organizacional.

A revisão da literatura é apresentada nos capítulos 2, 3 e 4, contemplando a fundamentação teórica para a realização do estudo. O capítulo 2 trata dos conceitos de produtividade e referese à medição de desempenho, onde ressalta a importância da estratificação dos dados. O capítulo 3 apresenta uma revisão sobre ociosidade fabril e a relação com a capacidade produtiva. O capítulo 4 contribui para o desenvolvimento do trabalho através de conceitos e aplicações do índice OEE.

Um estudo de caso é observado no capítulo 5, onde são apresentados a caracterização do estudo, dados coletados e análises efetuadas, além da metodologia aplicada e resultados obtidos.

Por fim, o capítulo 6 encerra estudo com a apresentação da conclusão do trabalho.

2 A PRODUTIVIDADE

2.1 Definições

Basicamente definida como uma relação entre os recursos utilizados (*input*) e os resultados obtidos (*output*), os conceitos de produtividade se aplicam em diferentes áreas de conhecimento (MARTINS & LAUGENI, 2006). Segundo o *Bureau of Labor Statistics* - BLS (2007) a produtividade é uma medida da eficiência econômica que mostra quão efetivamente as entradas são convertidas em saídas.

Para Contador (1996), a produtividade, no nível da operação, reflete o conceito taylorista de aumento da capacidade produtiva dos recursos envolvidos em uma operação de fabricação, representados por unidades de medida do tipo peças por hora-máquina.

Do ponto de vista de Lovell (1993, citado por Brito, 2003) a produtividade varia conforme as diferenças nas tecnologias de manufatura utilizadas pelas organizações, na eficiência do plano de operação observado, e no ambiente em que ocorre a produção. A análise desses fatores leva à identificação de possíveis fontes de ineficiência técnica, bem como a alternativas que possibilitam o aumento da produtividade.

Através de uma razão simples é possível identificar um ponto máximo de produtividade quando se tem uma situação onde os resultados pretendidos são alcançados com o emprego de uma menor quantidade de recursos possíveis. Ou seja, produzir mais (e melhor) com cada vez menos (CAMPOS, 1992, JENNINGS, 2003).

Campos (1992, p.3-5) ainda relaciona o impacto do faturamento e dos custos totais na produtividade de uma organização:

A definição de produtividade como o quociente entre o faturamento e os custos tem grande vantagem de, além de levar em conta todos os fatores internos da empresa (taxa de consumo de materiais, taxa de consumo de energia e taxa de utilização da informação), incluir o cliente como fator decisivo de produtividade. Se o cliente não quiser comprar, por maior que seja a eficiência da empresa, a produtividade cairá. A definição de produtividade, como colocada, serve para qualquer instituição: empresa manufatureira, empresa de serviços, hospitais, hotéis, prefeituras etc.

5

Considerando a produtividade um fator chave para o sucesso de uma organização, a tendência é que a busca por soluções que visem aumentá-la também cresça, resultando no surgimento de outras necessidades, como a questão da mensuração.

2.2 Medição do desempenho

Antes de se determinar as prioridades à serem atacadas para melhoria de um processo, deve-se analisar em conjunto os padrões de desempenhos, os desempenhos atingidos e a importância de cada desempenho no contexto global da organização (SLACK *et al.*, 2002).

Dessa forma, torna-se possível a identificação das variáveis e seus impactos no índice de produtividade da empresa e assim, estudos específicos podem ser realizados a fim de estratificar e resolver potenciais problemas.

Portanto, a primeira atividade que deve ser realizada no esforço para melhorar um produto ou processo é a elaboração de medidas de desempenho (DAL *et al.*, 2000; SLACK *et al.*, 2002; MARTINS & LAUGENI, 2006).

Para Tubino (1999) a busca pela vantagem competitiva das organizações tem como ponto inicial estabelecer quais critérios ou parâmetros de desempenho são relevantes para a empresa e que prioridades relativas devem ser dadas a eles.

Critérios de desempenho	Descrição
Qualidade	Desempenho acima da concorrência, MTBF, Alegação de garantia, nível de refugo, nível de reclamação, escore de satisfação do consumidor.
Velocidade	Confiabilidade, frequência de entregas, <i>Lead time</i> do pedido, tempo de ciclo, tempo de cotação do consumidor.
Confiabilidade	Porcentagem de pedidos entregue com atraso, proporção de produtos em estoque, cumprimento da programação apresentada.
Flexibilidade	Capaz de reagir de forma rápida a mudanças e eventos repentinos inesperados.
Custo	Manter custos mais baixos que a concorrência, variação contra orçamento, valor agregado, eficiência, utilização de recursos.

Quadro 1 - Descrição dos critérios de desempenho

Fonte: Adaptado de Slack et al. (2002)

Slack et al. (2002) definem padrões de desempenho da seguinte forma:

- a) Padrões históricos: comparam o desempenho atual com desempenhos anteriores.
 São capazes de julgar se uma operação está melhorando com o passar do tempo mas não demonstram se o desempenho é satisfatório;
- b) Padrões de desempenho meta: são estabelecidos de forma arbitrária para refletir algum nível de desempenho considerado adequado. O uso destes padrões pode resultar numa avaliação errônea da meta a ser atingida e gerar problemas para a organização quanto a ocorrência de falhas e obtenção de dados irreais;
- c) Padrões de desempenho da concorrência: visam à comparação entre o desempenho atual da organização e de seus concorrentes. Uma característica deste padrão é que os desempenhos avaliados estão relacionados diretamente com a competitividade do setor. Uma prática comum (e eficaz) entre algumas empresas vem sendo o *benchmarking*, onde buscam comparar seus resultados operacionais com as empresas líderes de seus próprios mercados (CAMPOS, 1992; MARTINS & LAUGENI, 2006);
- d) Padrões de desempenho absolutos: são padrões adotados considerando seus limites teóricos, por exemplo, um conceito de "estoque zero" num armazém. Numa primeira análise, padrões muitas vezes considerados inatingíveis mas com a capacidade de definir uma meta ideal para a organização.

Padrões de desempenho baseados em históricos de ocupação de máquinas em relação ao tempo disponível, por exemplo, considerando cada minuto do chamado Tempo Calendário, medem o índice TEEP. Estes podem ser utilizados para avaliar o potencial de capacidade de qualquer instalação industrial bem como indicar as oportunidades de melhoria que podem existir entre as operações (HANSEN, 2006).

2.3 Áreas de decisão na produção

As áreas de decisão contidas num sistema de produção são identificadas a partir da concepção de uma estratégia de produção. Esta estratégia pode ser definida como um conjunto de políticas adotadas em diversas áreas de decisão que sustentam a posição competitiva da empresa em seu ambiente concorrencial. As políticas definidas devem dar consistência e coerência ao conjunto de decisões (TUBINO, 1999).

A formulação e implantação de uma estratégia de produção ficam a cargo de um grupo seleto de gestores: os estrategistas.

Dotados de um olhar sistêmico, são capazes de analisar as informações e formular objetivos e diretrizes quanto a gestão de capacidade, custos, qualidade, flexibilidade, prazos de entrega, confiança, inovação e tecnologia (MARTINS & LAUGENI, 2006). Definem estraté gias de como processar apenas as informações pertinentes, identificando os pontos críticos existentes nas áreas de decisão, estabelecendo prioridades, meios e métodos.

Seja o foco a produção de um produto ou a oferta de um serviço, estas estratégias são adotadas com o intuito de melhorar a produtividade das organizações, tornando-as competitivas e lucrativas.

Áreas de decisão	Descrição		
Instalações	Localização geográfica, tamanho, volume e <i>mix</i> de produção, grau de especialização, arranjo físico e forma de manutenções.		
Capacidade de produção	Qual o nível, como dimensioná-la evitando a ociosidade de equipamento e o quanto pode ser incrementada.		
Tecnologia	Quais equipamentos e sistemas, qual o grau de automação e flexibilidade, como atualizá-la e disseminá-la.		
Integração vertical	O que a empresa irá produzir internamente, o que será terceirizado e qual política será implementada aos fornecedores.		
Organização	Qual a estrutura organizacional, nível de centralização, meios de comunicação, formas de acompanhamento de atividades e ferramentas de controle de processo.		
Recursos humanos	Como recrutar, selecionar, contratar, desenvolver, avaliar, motivar e remunerar a mão-de-obra.		
Qualidade	Atribuição de responsabilidades, controles, normas e ferramentas de decisões podem ser empregadas, quais padrões e formas de comparação.		
Planejamento e Controle da Produção (PCP)	Que sistema de PCP empregar, qual a política de compras e estoques a ser adotada, qual o grau de informatização das informações, que ritmo de produção manter e as formas de controle.		
Novos Produtos	Qual a frequência de lançamento, como desenvolver, projetar e qual a relação entre produtos e processos.		

Quadro 2 - Descrição das áreas de decisão na produção

Fonte: Adaptado de Tubino (2000)

2.4 Indicadores de desempenho

De posse do conhecimento da necessidade de se aumentar a produtividade, definidos os critérios de desempenho e as áreas a serem exploradas na tomada da decisão, uma ferramenta torna-se indispensável para se obter informações úteis sobre o real estado de um processo produtivo. São os chamados indicadores de desempenho.

Segundo Martins e Laugeni (2006) a gestão dos processos se dá através do uso de indicadores de desempenho amplamente discutidos e aceitos por todos os colaboradores que estiverem intimamente ligados aos objetivos estratégicos e táticos de uma organização.

Esta ferramenta permite acompanhar o andamento de um processo identificando riscos em potencial e problemas antes de se tornarem críticos, além de controlar a qualidade de um processo bem como a produtividade e auxílio na tomada de decisões. Para Flores *et al* (2002) a principal função dos indicadores de desempenho é identificar oportunidades de melhoria dentro das organizações.

Cada indicador de desempenho é capaz de fornecer informações métricas, em forma de medida, caracterizando um atributo, uma propriedade e até mesmo pontos relacionados à qualidade de um produto. Demonstrativos do nível de estoque, pontualidade na entrega, comparações dos resultados com metas planejadas anteriormente, cronoanálise caracterizam a diversidade de aplicação da ferramenta (MARTINS & LAUGENI, 2006).

Os indicadores permitem que uma empresa possa obter informações importantes para a mensuração adequada da eficiência do processo, bem como identificar os pontos relevantes relacionados à produtividade, como má alocação de recursos, desperdícios e ociosidade de equipamento. No entanto, deve-se tomar cuidado quando se tratar de medições estratégicas, uma vez que uma escolha inadequada poderá levar a resultados errôneos.

Portanto, é de grande importância a utilização dos indicadores de desempenho na organização. Em muitos casos, os sistemas de medição não são suficientemente visíveis, balanceados, abrangentes, consistentes e adaptáveis a mudanças, apresentando deficiências ao tentarem integrar todos os subsistemas de medição e alinhar as medidas tomadas aos objetivos estratégicos da organização. Indicadores factíveis na empresa de hoje, podem ser inadequados à empresa de amanhã, ou podem requerer flexibilizações e ajustes ao longo do tempo.

3 OCIOSIDADE

Ociosidade, do ponto de vista da ocupação, pode ser considerada um período de tempo ao qual uma capacidade existente não é utilizada. Ou seja, há uma disponibilidade de equipamento, mas este não se encontra em operação.

Hansen (2006) define Tempo Ocioso como sendo uma oportunidade perdida para a fábrica, onde os valores da TEEP diminuem e os custos fíxos se mantêm. Complementa ainda que "as fábricas eficazes preenchem este tempo".

São vários os fatores responsáveis pelo estabelecimento de uma situação de ociosidade de equipamento. Entre eles pode-se considerar um dimensionamento inadequado da capacidade instalada da empresa, uma previsão de demanda errônea, reflexos de um fraco relacionamento com clientes (problemas de qualidade do produto/serviço) ou ainda a adoção de uma política de capacidade incorreta e precoce.

No que diz respeito à subutilização de recursos disponíveis, quando em níveis muito altos podem tornar-se proibitivamente dispendiosas a adoção de políticas de capacidade constantes, que são aquelas estabelecidas sem a consideração de flutuações de demanda (SLACK *et al.*, 2002). Estas políticas são capazes de atingir os objetivos padrões de emprego estável e uma alta utilização do processo. O ponto fraco é o surgimento de estoques consideráveis.

De fato, há uma necessidade de se compreender a demanda e a capacidade para que políticas alternativas mais adequadas possam ser consideradas, com o intuito de reduzir (ou eliminar) a ocorrência de ociosidade de equipamento. Porém, assuntos de âmbito comercial também estão inteiramente relacionados com o controle deste índice, mas as ações corretivas não, necessariamente, são tomadas diretamente devido às regras estabelecidas com os clientes.

Verifica-se, portanto, que os indicadores de desempenho voltados para a medição da ociosidade de equipamento existente numa empresa estão diretamente ligados à sua capacidade produtiva.

3.1 Capacidade

Capacidade pode ser entendida pelo nível máximo de atividade de valor adicionado em determinado período de tempo, que o processo pode realizar sob condições normais de

operação. Em outras palavras, "a máxima produção de um empreendimento" (MARTINS & LAUGENI, 2006; SLACK *et al.*, 2002).

Martins e Laugeni (2006) descrevem duas visões a respeito da capacidade:

- Capacidade Teórica ou de Projeto: corresponde aos valores apresentados pelo fabricante ou fornecedor do equipamento a ser utilizado. É definida no momento de projeto da operação e, na prática, pode não ser atingida (SLACK et al. 2002);
- Capacidade Real ou Efetiva: trata-se do resultado obtido da subtração dos tempos de parada programados para o período a ser medido do tempo disponível para operação normal.

A Figura 1 demonstra a relação entre elas e ainda permite visualizar o quanto pode representar a produtividade real neste contexto, já considerando uma eventual ociosidade no processo.

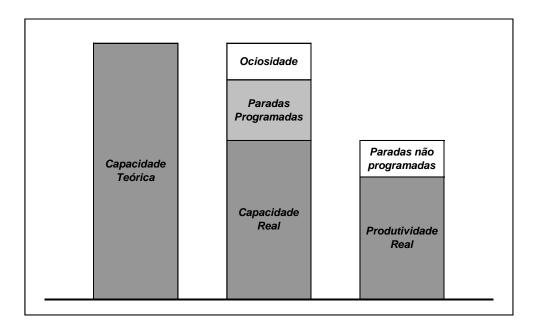


Figura 1: Visão geral da medida da capacidade.

Fonte: Adaptado de Slack et al. (2002)

Através do esquema apresentado na Figura 1 é possível identificar os fatores responsáveis por afetar a produtividade e, consequentemente, interferir na determinação da capacidade instalada de uma organização.

De acordo com Hansen (2006), quando se estuda capacidade de produção busca-se, em geral, por descobrir a existência da chamada "fábrica oculta" na planta, a qual pode e deve ser

descoberta para tornar a empresa mais competitiva de forma mais rápida e econômica. Esta corresponde a uma das formas de se prover um aumento considerável da capacidade de processamento de uma empresa.

Estudos referentes à capacidade instalada em uma planta são importantes também para identificar e estratificar, em números, uma situação de ociosidade de equipamento. Os gerentes de produção são responsáveis por apresentar os dados sobre a produtividade efetiva total (TEEP) dos centros de produção, visando não só justificar suas perdas de produtividade, mas no sentido de buscar por soluções para a melhoria deste índice.

3.1.1 Plane jamento e controle de capacidade

Para Slack *et al.* (2002) planejamento e controle de capacidade correspondem à tarefa de determinar a capacidade efetiva da operação produtiva, atendendo a demanda existente.

Cabe aos gerentes de produção a tarefa de receber e tratar uma previsão de demanda com pouca probabilidade de ser correta ou constante, além de utilizar de seu *feeling* para atender à esta demanda, visando diminuir o índice de ociosidade através de um dos pontos críticos: o dimensionamento da capacidade. As previsões têm uma função muito importante nos processos de planejamento dos sistemas de produção, pois viabilizam os gestores antevêem e planejarem futuras ações (TUBINO, 2000).

Assim, suas seqüência de decisões são baseadas nos quesitos listados a seguir com o intuito de se alcançar a produtividade necessária (SLACK *et al.* 2002):

- a) Custos: dependendo do nível de capacidade excedente à demanda o custo unitário do produto aumenta consideravelmente, devido à subutilização dos recursos (mãode-obra, equipamentos, insumos);
- b) **Receitas:** também depende da relação entre capacidade e demanda, mas neste caso quanto maior a capacidade maior será a garantia de que a demanda seja atendida, sem perda de receita;
- Capital de giro: está relacionado com uma política de estoque que tende a antecipar a demanda outrora prevista. Neste caso a organização é quem financia o estoque até que seja comercializado;

- d) Qualidade: o planejamento de capacidade produtiva pode influenciar na qualidade de um produto ou serviço por meio da introdução de mão-de-obra inexperiente no processo (empregados temporários, por exemplo) ou ainda promover interrupções na rotina de trabalho, aumentando as chances de ocorrência de anomalia;
- e) Velocidade de resposta: o tempo que leva uma organização para atender as necessidades de seus clientes pode ser um fator decisivo para sua sobrevivência no mercado. Políticas voltadas tanto para a geração de estoques (atender a pronta entrega) quanto para a adoção de capacidade excedente (fabricação por pedidos, sem filas) exigem o comprometimento das organizações com os custos envolvidos em cada uma das decisões;
- f) Confia bilida de: está diretamente ligada à relação existente entre demanda e capacidade, pois quanto mais próximo estiver da capacidade total a demanda, menores serão as chances de a organização lidar com possíveis interrupções como paradas não previstas ou problemas com fornecedores;
- g) **Flexibilidade:** geralmente, problemas gerados pela variação da demanda são mais facilmente tratados quando se há um excesso de capacidade instalada. Dessa forma é possível responder à qualquer aumento inesperado de demanda.

A utilização de ferramentas que permitem a determinação precisa da demanda, de um produto ou serviço, e a relação responsável por definir a capacidade a ser instalada tornam-se vitais para a obtenção de sucesso pelas organizações num cenário cada vez mais competitivo (MARTINS & LAUGENI, 2006; TUBINO, 2000).

Slack *et al.* (2002) comentam sobre a viabilidade de alguns métodos de ajuste de capacidade perante variações de demanda, voltados para a utilização de horas extras, realocação de tarefas no tempo ocioso, contratação de serviços terceirizados.

A busca pela determinação correta destes fatores da forma mais precisa possível tem apenas um objetivo: manter a produtividade maximizada. Ou seja, fazer uso adequado dos recursos de entrada, dimensionando corretamente cada necessidade de processamento e primar pela qualidade do bem ou serviço a ser ofertado.

4 EFICIÊNCIA DO PROCESSO

A produtividade de uma organização, como já observado no capítulo 2, trata-se de um conceito associado às quantidades de insumos empregados para realizar suas atividades e as quantidades de produtos gerados no decorrer do processo. A eficiência de um processo referese à habilidade de processamento, à capacidade de utilizar ao máximo e da melhor forma os recursos disponíveis, evitando os desperdícios, reduzindo os tempos de operação e as perdas existentes, contribuindo para a lucratividade da organização.

Estudos sobre estes dois conceitos são responsáveis por informar a relação entre os planos de operação em execução e planos de melhoria a serem adotados nas operações que compõe o processo. Em termos de produtividade, dão suporte ao estabelecimento de estratégias gerenciais que visam alcançar o melhor desempenho produtivo das organizações (BRITO, 2003).

Slack *et al.* (2002) definem eficiência operacional como sendo os esforços dedicados em cada operação com o intuito de reduzir sua própria complexidade e otimizando os custos de interação entre elas.

Numa visão simplificada, o cálculo de eficiência pode ser obtido através da razão entre o que se obteve (*output*) e o que se consumiu em sua produção (*input*), medidos na mesma unidade em termos percentuais (MARTINS & LAUGENI, 2006)

O projeto e a produção de bens de consumo não têm se mostrado uma tarefa tão difícil de ser executada pela maioria das empresas nos dias de hoje. Nas palavras de Tubino (1999) a dificuldade está em projetar e produzir bens de forma organizada, com o máximo de eficiência, atendendo às necessidades dos clientes.

O acompanhamento do índice de eficiência de equipamentos é uma prática encontrada em muitas organizações. Porém, o controle e monitoramento efetivo dos dados (o que viabiliza a tomada de uma ação de melhoria) já não correspondem a uma tarefa comumente executada. Muitas vezes os métodos adotados para mensurar a eficiência das suas operações não traduzem a realidade de seu desempenho. Seja pela inconsistência ou ineficácia da metodologia, a integração entre os indicadores medidos torna-se extremamente comprometida (BAMBER *et al.*, 2003).

Um sistema de medição correto da eficiência e a gestão com parâmetros-chave contribuem para aumentar a produtividade tanto em relação aos setores e departamentos quanto na planta como um todo. O método denominado Eficiência Global de Equipamento, ou OEE, contribui para o melhor entendimento e controle do desempenho do processo de manufatura e para a identificação da máxima eficácia possível (HANSEN, 2006).

4.1 Eficiência Global de Equipamento (OEE)

As organizações cada vez mais se esforçam em busca da eficácia e da redução dos custos de produção. Esse esforço é exigido constantemente num ambiente de mudanças, instável e extremamente competitivo. Muito se buscava melhorar baseado num pensamento setorial, de forma isolada. No entanto, Hansen (2006, p.22) exemplifica como a eficiência de um sistema produtivo é melhor determinada quando analisada num contexto de envolvimento global:

Algumas fábricas alcançam e mantêm um alto nível de produtividade com baixos custos de produção. Muitas utilizam uma abordagem disciplinada para identificar as principais melhorias a fazer. Elas usam equipes para eliminar a raiz do problema, que, de outra forma, impede a fábrica de buscar continuamente maiores níveis de eficácia. Em poucas palavras, encontraram o poder do OEE: Eficiência Global de Equipamento. Por reconhecer a "fábrica oculta" dentro da fábrica, elas fizeram melhorias que contribuíram diretamente para o resultado final operacional.

É possível perceber que a verdadeira função do índice OEE não está relacionado apenas com o controle da produção e sim, visa o envolvimento de todos buscando o melhoramento dos processos, redução da ociosidade, contribuindo para a identificação dos pontos críticos a serem focados em ações de melhoria, bem como a utilização de técnicas de gestão que visam uma melhor interação entre índices de qualidade e produtividade (BAMBER *et al.*, 2003; DAL *et al.*, 2000).

A OEE pode ser definido como o produto da disponibilidade (tempo real de operação *versus* tempo programado de operação) multiplicada pela performance (taxa de velocidade) multiplicada pela taxa de qualidade (produtos bons *versus* total de produtos fabricados) (HANSEN, 2006; MARTINS & LAUGENI, 2006; DAL *et al.*, 2000).

O índice OEE indica a eficácia do processo (produzir bons produtos na velocidade esperada) no tempo em que o equipamento está programado para operar (HANSEN, 2006).

De acordo com Dal *et al.* (2000) este índice pode ser usado em diferentes níveis de produção, no auxilio à padronização das tarefas, da comparação entre os próprios grupos de trabalho existente na empresa, além de disponibilizar informações sobre as perdas no processo. A OEE se relaciona diretamente com as razões financeiras críticas do processo (HANSEN, 2006).

Certamente, uma análise do ponto de vista da OEE é benéfica para todas as etapas do processo. No entanto, deve ser aplicado primeiramente nas etapas "gargalo" do processo que afetam o ganho, ou seja, muito dispendiosa na linha de manufatura (HANSEN, 2006).

Hansen (2006) ainda acrescenta que a OEE pode trabalhar sinergicamente com as informações financeiras de cada produto. Quando é utilizado como uma medida chave para controlar as etapas vitais da fábrica e quando a avaliação de desempenho dos colaboradores é resultado das melhorias realizadas, a eficiência do processo evolui muito. Em se tratando de gestão de equipamento voltado para melhoria da eficiência do processo, a OEE é considerada uma das práticas mais aceita e adequadas de se medir desempenho da produtividade (DAL *et al.*, 2000; MARTINS & LAUGENI, 2006; VORNE, 2007).

O cálculo do índice OEE surgiu devido a necessidade de se medir os dados relacionado às grandes perdas descritas pela Manutenção Produtiva Total (TPM), do inglês *Total Productive Maintenance*. São elas: quebras ou falhas, pequenos ajustes e *setup*, pequenas paradas não-previstas, redução da velocidade de processamento, perdas geradas no início do processo (*startup*) e rejeição oriunda do processo estabilizado (DAL *et al.*, 2000; MARTINS & LAUGENI, 2006; VORNE, 2007).

A medição e controle da OEE é a melhor forma de envolver muitos processos onde a capacidade de utilização é prioridade maior (reduzir ao máximo a ociosidade) e interrupções nos processos (pequenas paradas) representam perdas monetárias significativas (DAL *et al.* 2000).

Programas agressivos para a melhoria da OEE podem ser 10 vezes mais eficazes do que programas para o aumento da capacidade através do aumento de capital (HANSEN, 2006).

4.1.1 Obtenção da OEE

É grande o número de empresas que utilizam a OEE como um indicador relacionado à produtividade. Existem diversas formas quanto à metodologia de cálculo e todas levam a conclusões muito similares (MARTINS & LAUGENI, 2006).

Hansen (2006, p.46) descreve um método de cálculo da OEE e ratifica a importância da acurácia das informações coletadas e analisadas no processo, na influência do sucesso:

A informação coletada para cada item produzido pode facilmente formar o banco de dados para examinar a OEE e iniciar a implementação de melhorias na produtividade. Por exemplo, comparando o tempo inicial/final *versus* tempo de operação mede-se a eficiência. O tempo de ciclo inicial/final *versus* tempo de operação mede-se a velocidade e unidades produzidas *versus* unidades transferidas mede-se qualidade.

A OEE pode ser precisa e facilmente calculada através da multiplicação dos três fatores de determinação da eficiência: Índice de disponibilidade, índice de performance e índice de qualidade.

Índice de disponibilidade (ID)

A Disponibilidade do Equipamento mede com que freqüência um equipamento não está produzindo (paradas não planejadas) devido a quebras, falhas ou necessidade de ajustes. Compara o tempo em que o equipamento funcionou com o tempo total planejado para seu funcionamento. Paradas não planejadas não incluem intervalos para reuniões ou descanso, reuniões da equipe ou manutenção planejada.

No Quadro 3 é possível observar os fatores responsáveis por afetar a disponibilidade.

Perdas	Ocorrência	Observações
Quebras	Manutenção corretiva Quebras genéricas Falhas de equipamento	Há diferenças entre o conceito de quebra (afeta a disponibilidade) e de pequenas paradas (afeta a performance).
Ajustes e Setup	Alto tempo de <i>Setup</i> Ajustes principais Tempo de aquecimento	Esta perda geralmente está relacionada com os programas de redução dos tempos de execução.

Quadro 3 - Exemplos de eventos que afetam o índice de disponibilidade

Fonte: Adaptado de Vorne (2007); Martins e Laugeni (2006)

Índice de performance (IP)

A Performance do Equipamento mede o tempo de ciclo da máquina real contra o tempo de ciclo teórico. Ou ainda compara o número real de peças produzidas com o número de peças que o equipamento teoricamente deveria ter produzido no período programado. O tempo de ciclo teórico assume que não existem micro-paradas ou perdas por redução na velocidade de operação do equipamento.

No Quadro 4 é possível observar os fatores responsáveis por afetar a performance.

Perdas	Ocorrência	Observações
Pequenas paradas	Fluxo de produto obstruído Falhas na alimentação Verificação e limpeza	Geralmente são paradas de até 5 minutos e não necessitam de mão-de-obra específica para manutenção.
Redução de velocidade	Operação abaixo do nominal Desgaste de equipamento Ineficiência do operador	Corresponde a qualquer evento que mantenha o processo operando abaixo do especificado seja por uma meta estipulada ou pela especificação do fabricante.

Quadro 4 - Exemplos de eventos que afetam o índice de performance

Fonte: Adaptado de Vorne (2007); Martins e Laugeni (2006)

Índice de qualidade (IQ)

A Qualidade do Equipamento mede a performance da máquina do ponto de vista da qualidade. Compara o número de peças boas produzidas com o número total de peças produzidas no período programado. Peças defeituosas podem ser produzidas quando o equipamento não tem um bom desempenho ou durante a estabilização do processo. Mesmo peças que podem ser retrabalhadas devem ser contadas como defeitos.

No Quadro 5 é possível observar os fatores responsáveis por afetar a qualidade.

Perdas	Ocorrência	Observações
Rejeitos de início de produção	Retrabalho	Gerados no período de aquecimento, regulagens iniciais e de estabilização.
Rejeição da produção	Montagem incorreta Danos Expiração do processo	Rejeições obtidas com o processo estabilizado.

Quadro 5 – Exemplos de eventos que afetam o índice de qualidade

Fonte: Adaptado de Vorne (2007); Martins e Laugeni (2006)

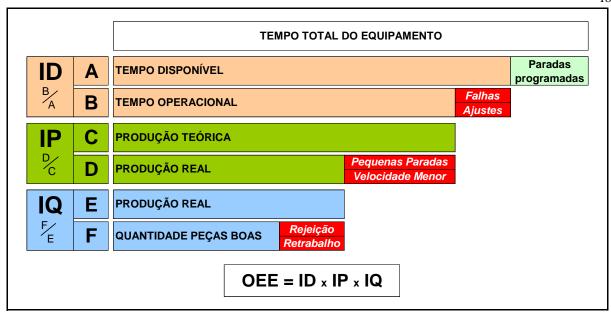


Figura 2: Es que ma de obtenção do índice OEE e seus fatores

Fonte: Toolkit (2007); Vorne (2007)

Uma observação pertinente quanto à OEE é a sua sensibilidade a cada um dos três índices que a compõem. Qualquer deslize em um deles tem um efeito devastador no resultado, já que será menor que o menor dos índices (MARTINS e LAUGENI, 2006). Constatado de forma isolada, essas medidas são indicadores importantes do real desempenho da operação, mas não fornecem uma visão completa da eficácia geral da máquina (SLACK et al., 2002).

4.1.2 Parâmetros de análise

De acordo com Hansen (2006), após analisar todos os principais processos e equipamentos contidos na planta é possível classificar o valor obtido da OEE da seguinte maneira:

- Valores abaixo de 65%: Inaceitável. Certamente existem pontos onde a deficiência é grande e está sendo jogado dinheiro fora;
- Valores entre 65% e 75%: Aceitável, mas somente se as tendências nos últimos três meses estiverem melhorando:

- Valores entre 75% e 85%: Muito bom, mas há a necessidade de melhoria continuamente se houver interesse em atingir níveis tangíveis propostos pelas chamadas organizações de classe mundial.
- Nível Classe Mundial: Para processos em lotes os valores devem ser superiores a 85%. Processos de fluxo discretos e contínuos o índice deve ser maior do que 90%. (Indústrias de fluxo contínuo precisam obter valores da OEE superiores a 95%). A Tabela 1 apresenta o benchmarking de "classe mundial".

Tabela 1: Fatores objetivos da Classe Mundial

Fator OEE	Índice Classe Mundial
Disponibilidade	90.0%
Performance	95.0%
Qualidade	99.9%
OEE	85.0%

Fonte: Adaptado de Vorne (2007)

4.2 Produtividade Efetiva Total de Equipamento (TEEP)

Considerando que a OEE mede a efetividade das programações de produção planejadas, a Produtividade Efetiva Total de Equipamentos mede a efetividade total do equipamento em relação a cada minuto do relógio. Basicamente a medida TEEP verifica o quão efetivamente as organizações operam seus processos em relação ao tempo total do calendário.

A TEEP indica as oportunidades que podem existir entre as operações correntes e os níveis de classe mundial. Ela revela a "fábrica oculta" que pode ser descoberta para tornar as organizações mais competitivas e, assim como a OEE, necessita ser combinada com informações financeiras (HANSEN, 2006).

Tendo em vista que a TEEP considera todos os eventos durante todo o tempo calendário, esta é a medida que pode ser utilizada quando se planeja um negócio que requer mais capacidade ou aumento de capital. Pode caracterizar um bom indicador de capacidade que ainda está disponível em ativos existentes, podendo ser planejada de forma rápida e com menores riscos.

Conforme apresentado em 1999 na conferência da Sociedade dos Profissionais de Manutenção e Confiabilidade, "a *Rohm & Hass Corporation* concluiu que desenvolver a fábrica oculta em fábricas existentes custa cerca de 10 vezes menos do que construir nova capacidade. Considere quão vantajosa são estas economias no retorno dos ativos" (HANSEN, 2006).

Uma importante estratégia operacional para todas as empresas consiste em manter um certo equilíbrio entre a produção e a capacidade de produção em relação à demanda, através da formação de sólidas parcerias estratégicas, eliminando as incertezas do período (HANSEN, 2006; SLACK *et al.*, 2002; TUBINO, 2000).

Hansen (2006, p.37) faz uma comparação entre a OEE e a TEEP e identifica pontos importantes:

A OEE considera as paradas planejadas, considerando que a TEEP destaca as atividades necessárias exigidas quando não há planejamento para produzir. Essas atividades incluem paradas temporárias de equipamentos, paradas planejadas para manutenção, testes, desenvolvimento de novos produtos, reuniões, treinamentos e planejamentos para necessidades do pessoal, programação dos turnos e estratégias de manufatura. A TEEP também registra todo o retrabalho *on-line* que afeta o equipamento-chave.

É possível comparar e visualizar as fórmulas do OEE e TEEP graficamente, onde pode ser traçado qualquer prazo que se queira investigar através da Figura 3.

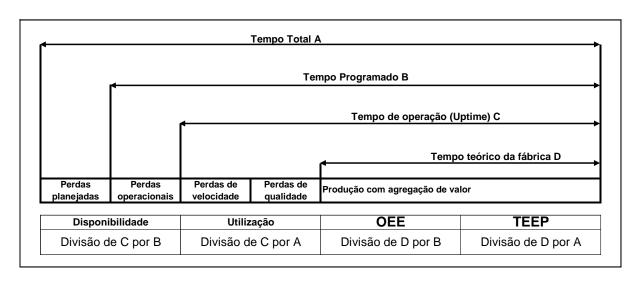


Figura 3: Visualizando as fórmulas da OEE e TEEP

Fonte: Adaptado de Hansen (2006)

O comprimento total A é o tempo calendário do período que se está observando. B é a quantidade de tempo de produção programado dentro de A. C é a quantidade de tempo real de operação ou tempo operacional do equipamento. D é a quantidade tempo de produção com agregação de valor. Esse deve ser ajustado com o tempo teórico da fábrica calculado a partir da quantidade de produtos bons reportados. Se considerado apenas o tempo de produção planejado, TEEP = OEE.

As oportunidades para alavancar parte da fábrica oculta podem surgir de melhorias direcionadas para as tarefas não relacionadas com o setor de produção. Hansen (2006) exemplifica:

- Redução do tempo de parada planejada para a manutenção;
- Reduzindo o tempo de troca de ferramentas fazendo uso de módulos pré-montados;
- Executar testes somente quando projetados estatisticamente;
- Estabelecer um grupo adequado de trabalho, prevendo períodos de revezamento, cobertura de férias e horas-extras;
- Comprometimento com o treinamento e educação dos colaboradores que não pertencem à linha de produção;
- Manter uma estrutura de comunicação adequada, agendando reuniões fora do horário de trabalho visando minimizar os impactos das interrupções no trabalho;
- Obtenção de melhoria na confiabilidade da entrega;
- Melhora nas transições para modificações em equipamentos novos, com treinamentos adequados, programados adequadamente com todos os envolvidos.

Quando a liderança proativa conduz as atividades de melhoria tanto na produção, como nas áreas não-produtivas, o aumento da eficiência em todo o trabalho melhora o limite operacional. Quando o foco encontra-se somente na produção e as atividades não-produtivas correm o risco de ser ignoradas ou subvalorizadas, práticas de trabalho mal-executadas evoluem para o trabalho fora da linha, impactando diretamente na OEE.

5 ESTUDO DE CASO

5.1 Caracterização do estudo

A empresa

A empresa em questão foi estabelecida na cidade de Maringá no ano de 1997, fundada por um grupo francês especializado na produção de embalagens plásticas para cosméticos e perfumaria. Produz embalagens a partir de resinas termoplásticas nobres pelo processo de moldagem por injeção e sopro. Neste período se consolidou no mercado nacional e internacional atendendo à clientes que possuem grande influência no mercado, como Avon, Natura, O Boticário, Victória' Secrets, Ebel Paris, entre outros.

Em agosto de 2006, o capital da empresa foi negociado com o grupo norte americano Aptar tendo seu controle acionário alterado, mantendo suas características de gestão e atuando com autonomia dentro do grupo em tomadas de decisões sobre políticas internas e de mercado.

A empresa possui hoje certificação ISO 9001:2000 referente ao sistema de gestão integrada da qualidade de seus produtos e processos e SA 8000 que estabelece normas de responsabilidade social. A empresa encontra-se em fase de adequação com o intuito de obter, futuramente, uma certificação e implantação de um sistema de gestão ambiental (ISO 14000).

Dentre as unidades industriais contidas na empresa destacam-se 19 máquinas injetoras e 5 máquinas sopradoras contemplando diversas especificações e atendendo a uma gama ampla e variada de negócios, conforme mostrada no Anexo B.

Em razão da existência de exigências requeridas pelas normas que certificam a empresa e, principalmente, pela busca da melhoria contínua de seus processos, esta necessita mensurar de forma precisa os dados coletados, registrando-os adequadamente. Dessa forma, se torna possível a obtenção de um panorama real de operação à partir de dados organizados, estratificados, que mostrem os principais pontos de eficiência e/ou ineficiência e permitem que ações necessárias sejam tomadas segundo suas prioridades.

Os departamentos bem como as funções constituintes da organização responsáveis pela elaboração, controle e execução de seus processos estão detalhados no Anexo A.

Metodologia

Este trabalho foi fundamentado num estudo de caso, através de uma análise de dados coletados nos setores de sopro e injeção da empresa. Uma consulta em livros, artigos e outros textos publicados, demonstrando o comportamento da produtividade quando influenciada por fatores como a ociosidade e eficiência do processo, constituíram a revisão bibliográfica sobre o assunto.

Os dados coletados, fontes deste estudo, são referentes ao ano de 2006 e foram apresentados da mesma forma como calculados na empresa. Assim, tornou-se possível identificar o método atual utilizado tanto no levantamento da ociosidade de equipamento quanto na medição da eficiência do processo. Os mesmos dados, reorganizados, serviram como base para a análise do ponto de vista da OEE e a obtenção de um coeficiente de eficiência mais completo, através de novos modelos de equações e a influência de outros fatores antes não considerados ou mal utilizados no modelo anterior.

Demanda por indicadores

O mercado das empresas de embalagens plásticas, mais precisamente voltado para os que dependem dos processos de moldagem por sopro e injeção, é caracterizado por empresas que possuem um grande *mix* de produtos e trabalham sob encomenda (pedidos, ordens de compra, programação de lotes, etc.).

Sendo assim, existem características bastante específicas que são também causas que dão origem ao comportamento do setor e às necessidades a serem supridas, tais como:

- a) a existência de grande sazonalidade dos pedidos dos diferentes produtos, o que torna a ociosidade inerente ao processo produtivo;
- a complexidade do processo devido ao grande número de variáveis envolvidas no seqüenciamento das atividades, principalmente relacionado à oferta de mão-deobra especializada.

Logo, a empresa estudada apresentou seus indicadores que serviam de base para registro e análise dos fatores que julgava ser necessários para o estabelecimento do controle de seu processo. São eles a produtividade, eficiência de equipamento, registros dos tempos

operacionais e de paradas de máquina segregados por motivos de ocorrência (conforme Apêndice A), entre outros.

No entanto, motivou o estudo a necessidade de se apresentar o impacto na produtividade gerado pelo nível de ociosidade de equipamento, demonstrado pela análise do tempo de utilização dos recursos disponíveis nos setores de sopro e injeção.

Da mesma forma, sabendo-se que o controle da eficiência de um processo deve ser baseado na veracidade e precisão das informações coletadas, foi identificado a necessidade de se tratar a gama de informações, já obtidas através dos métodos de controle existentes na empresa, de uma forma mais completa com o intuito de reportar à gerência uma real situação de processo, reduzindo ao máximo as chances de se analisar dados manipulados ou errôneos.

5.2 Dados coletados

Foram utilizadas planilhas de controle para que os dados (estes lançados conforme apontamentos efetuados durante todo o período estipulado) pudessem ser armazenados e organizados de modo que as análises referentes ao processo fossem realizadas com o máximo de agilidade possível.

5.2.1 Análise da produtividade

Basicamente, um indicador chamado de porcentagem de produtividade média era responsável por mensurar e monitorar o fator produtividade da planta nos setores de sopro e injeção.

A empresa adotou a prática a fim de iniciar um sistema de medição com o intuito de aprimorar a metodologia conforme eram identificadas as necessidades de modificações para que, cada vez mais, pudesse tomar ações decisivas em relação ao processo sob uma análise de sua real situação operacional.

O método de cálculo existente na empresa envolvia todo o recurso "tempo disponível" de cada equipamento e todas as ocorrências que resultassem em um tempo ineficiente durante o período, produtivo ou não. Ou seja, qualquer motivo que fizesse com que a capacidade instalada não estivesse operando em sua totalidade resultava em impactos negativos no indicador, o qual era responsável por retratar a produtividade dos setores.

Tempos referente à manutenções preventivas e corretivas, regulagens de início de produção, micro paradas (ajustes e reparos), *setup* de moldes, alterações do ciclo de manufatura e até mesmo paradas resultantes da falta de pedidos (ociosidade) eram consideradas no cálculo do indicador de produtividade.

Alguns autores ratificam a idéia de que a verdadeira produtividade só pode ser obtida através de uma abordagem global, considerando todos os fatores que possam vir a resultar em uma ineficiência no processo, conforme adotado pela organização em questão. Dessa forma, é possível identificar a amplitude da visão gerencial da empresa, ao ponto de considerar toda perda resultante do processo como uma oportunidade de melhoria a ser priorizada de acordo com o nível de impacto gerado.

O sistema é baseado num indicador de produtividade que relaciona o número de peças que devem ser produzidas num período de tempo, respeitando o número de cavidades do molde e o ciclo teórico ($P_{Teórica}$) e as peças que realmente são produzidas no período de tempo estipulado (P_{Real}). A equação correspondente ao cálculo da produtividade era composta da seguinte forma:

% produtividade =
$$\frac{P_{\text{Real}}}{P_{\text{Teórica}}}$$
 (1)

, sendo:

$$\mathbf{P}_{\text{Teórica}} = \frac{(\mathbf{T}_{\text{D}})x(n^{\circ}cav.)}{\mathbf{T}_{\text{Ciclo}}}$$
(2)

, onde:

- ✓ T_D tempo disponível para operação (já descontados os tempos de interrupção ou ociosidade);
- \checkmark n^o cav. número de cavidades que possui o molde de cada produto;
- \checkmark T_{Cido} ao tempo de ciclo de produção do produto.

De acordo com os parâmetros decorrentes do processo, foi obtido diariamente um valor de produtividade para cada produto. Para que o índice relacionado ao setor (sopro ou injeção) pudesse ser obtido, uma média ponderada era calculada ao final de cada mês. Os dados de cada setor estão apresentados nas tabelas 2 e 3.

Tabela 2: Produtividade no setor de sopro

2006	Produtividade
Janeiro	22,13%
Fevereiro	44,52%
Março	28,43%
Abril	12,74%
Maio	29,62%
Junho	14,02%
Julho	25,08%
Agosto	28,78%
Setembro	63,78%
Outubro	41,61%
Novembro	31,20%
Dezembro	26,12%

Tabela 3: Produtividade no setor de injeção

2006	Produtividade
Janeiro	50,83%
Fevereiro	55,94%
Março	57,92%
Abril	53,34%
Maio	59,65%
Junho	60,62%
Julho	62,84%
Agosto	71,32%
Setembro	77,62%
Outubro	73,83%
Novembro	63,38%
Dezembro	48,55%

Com base nos dados retratados nas tabelas 2 e 3 foi possível obter o índice ponderado da produtividade referente ao ano de 2006 para cada setor, conforme Tabela 4.

Tabela 4: Produti vi dade anual

2006	Produtividade Média
SOPRO	30,67%
INJEÇÃO	61,32%

Durante todo o ano de 2006 a organização apenas monitorava os dados coletados. Por mais que fossem identificados pontos de ineficiência na produtividade, este fato (por si só), não fora o suficiente para que ações decisivas pudessem ter sido tomadas.

Havia a necessidade de estratificação dos dados para que os reais impactos fossem observados e, após corretamente analisados, viabilizassem a adoção de prioridades na tomada de decisões, com o intuito de serem minimizados ou até mesmo eliminados.

No momento da análise dos métodos de controle de processo da empresa foram identificadas importantes práticas de medição, como a questão do apontamento de dados do processo. Estes registros apresentavam, além de informações de quantidades produzida e rejeitada, os tempos em que cada máquina manteve-se inoperante durante cada turno de trabalho. O que não, necessariamente, resultou em contribuição para a tomada de decisões.

Não há dúvidas de que o registro e armazenamento dos dados são de vital importância para que o monitoramento de um processo seja eficiente. Porém, estes não são capazes de tomarem uma ação (corretiva e/ou preventiva), quando necessária, se não houver um estudo analítico e metódico destes dados. Prática esta constatada na organização.

Mesmo não ocorrendo a quantificação das razões que impactaram negativamente no desempenho da produtividade dos setores de sopro e injeção (o que permitiria agir corretivamente nos pontos críticos), o índice de produtividade monitorado pela empresa atendia às suas expectativas e retratava, de forma genérica, parâmetros referentes a disponibilidade e utilização de recursos baseados no fator tempo disponível (máquinas, mão-de-obra, instalações físicas, etc.).

Sendo assim, foi possível constatar, e de forma positiva, que este índice correspondeu à produtividade efetiva total de equipamentos, ou seja, o índice TEEP.

5.2.2 Análise da eficiência

O monitoramento da eficiência dos processos abordados na análise efetuada pela empresa seguia o padrão adotado pela maioria das empresas brasileiras. Ou seja, através de uma relação direta entre o que se obteve (*output*) e o que foi consumido em sua produção (*input*).

No caso específico das organizações que atuam no mercado de embalagens plásticas, voltado para o setor de cosmético e perfumaria, a mesma relação pode ser entendida como o quociente entre a quantidade real produzida pela quantidade a ser produzida num determinado intervalo de tempo (tempo programado).

Quanto aos processos de moldagem por sopro e injeção em questão, pode-se destacar a importante e direta relação existente entre o ciclo de produção trabalhado e a eficiência de cada produto.

O método de medição da empresa era composto por um indicador mensal de eficiência, o qual considerava, de forma ponderada, todos os itens que realmente haviam sido produzidos (P_{Real}) pela quantidade que, teoricamente (conforme ciclo homologado), deveria ter sido produzida ($P_{Teórica}$).

Mesmo o indicador tendo seu período de avaliação mensal, os dados eram monitorados diariamente pela supervisão e gerência da produção através dos apontamentos realizados no dia anterior e registrados em planilhas eletrônicas, conforme exemplificado no Anexo C.

Os cálculos para obtenção da eficiência por produto, que permitia a composição de um índice diário e, posteriormente, mensal, obedeciam a se seguinte equação:

% eficiência =
$$\frac{P_{\text{Real}}}{P_{\text{Teórica}}}$$
 (3)

, sendo:

$$\mathbf{P}_{\text{Teórica}} = \frac{(\mathbf{T}_{\text{D}} - \mathbf{T}_{\text{P}})x(n^{\circ} cav.)}{\mathbf{T}_{\text{Ciclo}}}$$
(4)

, onde:

- \checkmark T_D _ tempo disponível para operação (já descontados os tempos de interrupção ou ociosidade);
- \checkmark T_P tempos de paradas consideradas previstas;
- \checkmark n^o cav. número de cavidades que possui o molde de cada produto;
- \checkmark T_{Cido} tempo de ciclo de produção do produto.

Segundo o método adotado pela empresa, os tempos de parada de máquina (T_P) eram descontados do cálculo da eficiência por não interferirem no desempenho do processo durante a execução de uma ordem de produção (OP). As razões correspondiam a:

- > Troca de moldes (setup);
- > Troca de cor;
- > Testes de máquinas e equipamentos;
- > Testes de moldes;
- Manutenções preventivas.

Nas tabelas 5 e 6 é possível observar os resultados mensais obtidos durante o ano de 2006.

Tabela 5: Demonstrativo de eficiência no setor de sopro

2006	Produtividade Real (pç)	Produtividade Teórica (pç)	Eficiência
Janeiro	327.623	398.042	82,31%
Fevereiro	845.259	1.095.848	77,13%
Março	435.761	538.867	80,87%
Abril	154.011	165.636	92,98%
Maio	384.780	427.982	89,91%
Junho	221.092	244.901	90,28%
Julho	365.084	432.634	84,39%
Agosto	275.537	312.268	88,24%
Setembro	801.821	997.148	80,41%
Outubro	600.655	800.023	75,08%
Novembro	356.170	509.446	69,91%
Dezembro	338.881	441.003	76,84%

Tabela 6: Demonstrativo de eficiência no setor de injeção

2006	Produtividade Real (pç)	Produtividade Teórica (pç)	Eficiência
Janeiro	4.263.014	5.486.232	77,70%
Fevereiro	3.706.683	4.660.221	79,54%
Março	5.124.758	6.408.666	79,97%
Abril	3.054.218	3.929.927	77,72%
Maio	4.038.860	5.632.858	71,70%
Junho	4.339.749	6.133.182	70,76%
Julho	5.107.167	6.568.508	77,75%
Agosto	5.850.408	7.301.321	80,13%
Setembro	5.028.254	6.410.921	78,43%
Outubro	5.269.400	6.453.516	81,65%
Novembro	4.349.405	6.046.846	71,93%
Dezembro	3.795.139	5.413.238	70,11%

Com base nos dados retratados nas tabelas 5 e 6 foi possível obter o índice ponderado da eficiência referente ao ano de 2006 para cada setor, conforme Tabela 7.

Tabela 7: Demonstrativo de eficiência anual

2006	Produtividade Real (pç)	Produtividade Teórica (pç)	Eficiência
SOPRO	5.106.674	6.363.798	80,25%
INJEÇÃO	53.927.055	70.445.436	76,55%

De acordo com a metodologia aplicada pela empresa foi possível destacar a importância do controle e monitoramento dos dados, assim como já observado no cálculo do índice de produtividade. No entanto, o simples acompanhamento dos registros de eficiência não basta para que uma organização conquiste saltos de melhoria em seus processos. Há a necessidade de serem tomadas ações sobre os pontos identificados de ineficiência.

Foi identificado que a empresa realizava análise dos tempos de parada de máquina que afetariam a eficiência do processo porém, não eram suficiente para apresentar a real situação operacional dos setores de sopro e injeção da empresa.

Os valores da eficiência obtidos através dos cálculos empregados também mostravam (de forma muito benéfica) impactos gerados, principalmente, relacionados a tempos de produção dos moldes com número de cavidades inferior ao que deveria e ao ciclo real de trabalho.

Por outro lado, como o indicador se baseava em números de peças produzidas, não havia como saber se os valores de eficiência contemplavam, por exemplo, o número de peças reprovadas por problemas de qualidade.

5.3 Modelo proposto

Após apresentados os modelos de controle e monitoramento dos processos utilizados pela empresa, o estudo dos próprios dados obtidos pelos processos (e reorganizados) contribuiram para a elaboração de propostas de melhorias a serem adotados pela organização.

Depois de organizados em planilhas de trabalho, os dados permitiram a utilização de ferramentas estatísticas como o Gráfico de Pareto, por exemplo, onde foi possível observar a

frequência de ocorrências de cada motivo de parada em relação ao tempo programado para produzir.

Os tempos de parada considerados planejados, como manutenções preventivas, testes de produtos, máquinas e moldes, além de todo o tempo ocioso ocasionado por falta de pedidos também foram organizados e analisados sob a forma de gráficos e, dessa forma, facilitou a visualização quantitativa dos impactos na produtividade.

De acordo com Slack *et al.* (2002) em qualquer processo de melhoria vale a pena distinguir entre o que é importante e o que é menos importante para que as prioridades possam ser definidas.

Sendo assim, no momento da análise dos impactos na produtividade nos setores de sopro e injeção da empresa, foi considerado o uso dos Gráficos de Pareto com o intuito de dispor a informação de modo a tornar evidente e visual a priorização de problemas. Essa priorização permitiu concentrar os esforços em pontos chaves para a obtenção da melhoria.

Campos (1992) afirma que a análise de Pareto permite dividir um problema grande e complexo em vários problemas menores e mais simples através da estratificação dos dados, prática chamada por ele de "desdobramento" do gráfico de Pareto.

A utilização desta ferramenta foi determinada para mensurar os dados que, conforme definições do processo, não afetariam o desempenho da eficiência dos equipamentos. Isto porque foi identificada a necessidade de se avaliar os impactos na produtividade gerados pelo tempo gasto com as paradas planejadas, além da perda de produtividade por falta de ordem de produção (ociosidade).

O objetivo do levantamento corresponde à proporcionar uma melhor utilização das informações já existentes no processo da empresa e permitir que ações corretivas e/ou preventivas possam ser tomadas no momento correto. Sem atrasos ou descasos.

A seguir, apresentam-se os tempos registrados que afetaram a produtividade (e não a eficiência) analisados mensalmente.

Tabela 8: Tempos (em horas) de paradas planejadas e ociosidade – Sopro

2006	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
Manutenção Preventiva Geral	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Troca de Molde / Produção	0,5	0,0	9,3	10,4	6,2	3,0	9,5	0,9	18,5	20,9	20,9	0,6
Teste de produtos	2,0	0,7	30,6	0,0	8,5	36,3	8,3	6,5	31,3	189,0	189,0	0,0
Testes de Matéria Prima	0,0	0,0	0,3	0,0	0,0	0,0	0,0	0,0	0,0	4,7	4,7	0,0
Testes de Máquina / Molde	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Troca de Côr	2,4	0,0	1,2	2,5	0,2	5,9	0,0	0,0	2,0	2,2	2,2	0,6
Aguardando Ordem de Produção	1907,3	1248,2	1792,7	1951,7	1728,9	2295,6	1997,1	1838,4	845,1	1015,1	1015,1	1881,6
Manutenção Preventiva Diária - Engraxar	0,0	0,5	1,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0

Tabela 9: Tempos (em horas) de paradas planejadas e ociosidade – Injeção

2006	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
Manutenção Preventiva Geral	0,0	0,0	0,0	0,0	0,0	11,3	2,2	0,0	0,0	0,4	0,4	0,0
Troca de Molde / Produção	40,8	63,1	33,1	46,1	87,7	94,8	135,5	122,3	100,6	114,7	114,7	87,8
Teste de produtos	31,8	608,3	570,2	630,3	553,5	593,4	493,3	454,6	181,2	156,2	156,2	152,9
Testes de Matéria Prima	21,2	0,6	2,7	27,0	2,2	0,0	0,0	0,0	1,7	11,2	11,2	0,0
Testes de Máquina / Molde	0,0	0,0	0,0	0,0	0,0	0,0	0,0	24,0	0,0	0,0	0,0	0,0
Troca de Côr	3,9	7,6	15,1	4,3	32,3	5,6	6,7	4,0	8,6	11,1	11,1	9,5
Aguardando Ordem de Produção	2413,7	1312,4	1417,7	1475,3	800,8	264,1	82,9	82,7	64,4	55,8	55,8	2748,9
Manutenção Preventiva Diária - Engraxar	0,0	1,0	0,6	0,0	6,5	0,0	0,0	0,0	0,3	2,0	2,0	0,3

Posterior a alocação dos dados acumulados durante o ano de 2006, foi construído um gráfico de Pareto onde constataram-se, dentre os motivos de parada listados, as razões pelas quais os

gestores poderiam focar seus esforços a fim de minimizar os impactos na produtividade dos setores de sopro e injeção (Gráficos 1 e 2).

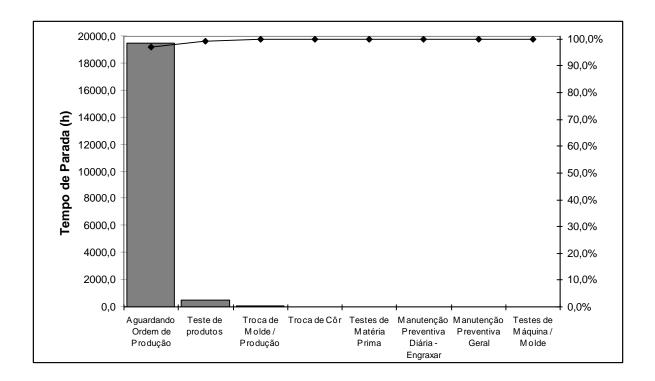


Gráfico 1: Análise de Pareto no setor de sopro.

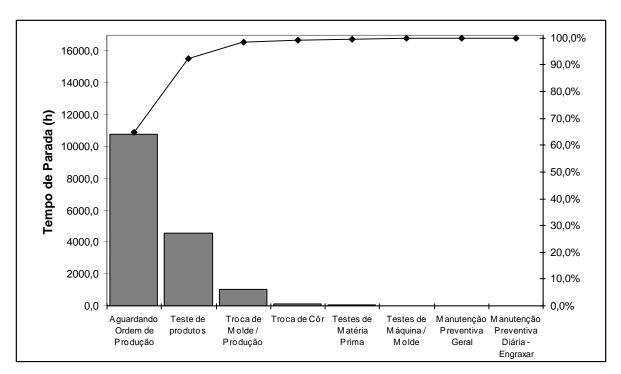


Gráfico 2: Análise de Pareto no setor de injeção.

Os resultados apresentados pela análise dos tempos de paradas planejadas e ociosidade indicam claramente a necessidade de se analisar mais a fundo a questão da não utilização de recursos disponíveis (como no caso, a sub-utilização de máquinas) principalmente no setor de sopro.

Em relação à eficiência do processo, preferiu-se analisar os dados sob um novo enfoque para que, através dos dados obtidos, se tornasse viável a tomada de decisão por parte dos gestores (e de todos os envolvidos) sobre os pontos realmente críticos identificados com base em dados mais concretos e tangíveis. Ou seja, reduzir ou até eliminar os focos reais de ineficiência nos setores de sopro e injeção.

5.3.1 Análise da ociosidade

Conforme já observado, identificou-se a necessidade de se mensurar de forma mais completa o índice de ociosidade nos setores de sopro e injeção.

O estudo contou com dados referentes à disponibilidade de máquina que foram contabilizados com base no número de horas operacionais de cada mês durante o ano de 2006.

Descontando os apontamentos referentes ao motivo "Aguardando ordem de produção" foi possível obter um índice o qual a empresa não tomava, até o momento, como prioridade: o índice de ocupação (Tabelas 10 e 11).

Tabela 10: Análise da ociosidade no setor de sopro

2006	Tempo disponível (h)	Tempo ocioso (h)		Tempo produtivo (h)	
Janeiro	2672	1907	71,4%	765	28,6%
Fevereiro	2672	1248	46,7%	1424	53,3%
Março	3003	1851	61,6%	1152	38,4%
Abril	3003	1952	65,0%	1051	35,0%
Maio	2783	1729	62,1%	1054	37,9%
Junho	2792	2296	82,2%	496	17,8%
Julho	2860	1997	69,8%	863	30,2%
Agosto	2904	1838	63,3%	1066	36,7%
Setembro	2740	845	30,8%	1895	69,2%
Outubro	2792	1015	36,4%	1777	63,6%
Novembro	2544	1478	58,1%	1066	41,9%
Dezembro	2857	2192	76,7%	665	23,3%

Tabela 11: Análise da ociosidade no setor de injeção

2006	Tempo disponível (h)	Tempo ocioso (h)		Tempo produtivo (h)	
Janeiro	8549	2414	28,2%	6135	71,8%
Fevereiro	8549	1312	15,3%	7237	84,7%
Março	9610	1457	15,2%	8153	84,8%
Abril	9610	1475	15,3%	8135	84,7%
Maio	8905	801	9,0%	8104	91,0%
Junho	8933	264	3,0%	8669	97,0%
Julho	9151	83	0,9%	9068	99,1%
Agosto	9291	83	0,9%	9208	99,1%
Setembro	8767	64	0,7%	8703	99,3%
Outubro	8933	56	0,6%	8877	99,4%
Novembro	8139	603	7,4%	7536	92,6%
Dezembro	9142	3189	34,9%	5953	65,1%

De acordo com os dados apresentados nas Tabelas 10 e 11, foi calculado um índice médio de ocupação de máquinas (Tabela 12), para cada setor considerando todo o tempo disponível para utilização da capacidade instalada.

Tabela 12: Índice de ocupação anual

2006	Tempo disponível (h)	Tempo produtivo (h)	Índice de Ocupação (%)		
SOPRO	33.619	13.271	39,47%		
INJEÇÃO	107.580	95.779	89,03%		

Após a verificação do índice de ocupação foi possível concluir que o impacto na produtividade decorrente deste fator é, consideravelmente, mais expressivo no setor de sopro do que no setor de injeção. Fica claro pelo índice de ociosidade observado no setor de injeção pouco mais de 10% em relação ao tempo disponível, enquanto que no setor de sopro o indicador correspondeu a exatos 60,53%.

A partir desta análise foi apresentada à direção da empresa uma análise do impacto da ociosidade na produtividade em termos financeiros.

Devido a complexidade do processo, se fez necessário adotar uma estimativa de alguns dados, em ambos os processos, para que se pudesse padronizar um método de medição a fim de se obter o impacto financeiro a partir da quantidade real produzida, mês a mês, e o quanto seria o faturamento no caso da utilização da capacidade máxima instalada na empresa (conforme Tabelas 13 e 14).

Foram adotados valores médios, considerando todos os produtos fabricados em cada mês, para os seguintes quesitos:

- ✓ Número de cavidades dos moldes;
- ✓ Ciclos de produção;
- ✓ Preço de venda;
- ✓ Custos de fabricação.

O valor do faturamento real corresponde à porcentagem produtiva (conforme apresentado nas Tabelas 10 e 11) sobre o faturamento ideal, que é estimado considerando todo o tempo disponível de operação. O tempo de operação disponível, quando multiplicado pelo número de cavidades e dividido pelo ciclo médio, determina a produtividade ideal. A diferença entre

os valores de custo médio e preço de venda resultam no faturamento ideal de acordo com a produtividade de cada mês.

Tabela 13: Impacto da ociosidade observada no setor de sopro

2006	Ciclo Médio (s)	Média Cav.	Produtividade ideal (pç)	Custo Médio teórico (\$) 0,3389	Preço de venda (\$) 0,6443	Faturamento ideal (\$)	Faturamento real (\$)
Janeiro	14,64	2	1.313.934	445.292,38	846.567,95	401.275,57	114.850,43
Fevereiro	21,86	4	1.759.927	596.439,19	1.133.920,84	537.481,65	286.410,99
Março	21,85	4	1.979.187	670.746,54	1.275.190,30	604.443,77	231.892,11
Abril	21,05	2	1.027.203	348.119,05	661.826,80	313.707,75	109.802,11
Maio	23,34	3	1.287.689	436.397,70	829.657,82	393.260,13	148.924,42
Junho	25,71	3	1.172.695	397.426,49	755.567,68	358.141,19	63.588,77
Julho	24,23	3	1.274.598	431.961,13	821.223,24	389.262,11	117.419,56
Agosto	24,72	2	845.684	286.602,47	544.874,50	258.272,04	94.779,26
Setembro	29,36	3	1.007.749	341.526,01	649.292,45	307.766,43	212.838,63
Outubro	28,93	3	1.042.171	353.191,67	671.470,62	318.278,95	202.558,42
Novembro	26,89	2	681.046	230.806,40	438.797,77	207.991,37	87.130,65
Dezembro	22,33	3	1.381.736	468.270,26	890.252,36	421.982,11	98.206,14
						4.511.863,06	1.768.401,49

Tabela 14: Impacto da ociosidade observada no setor de injeção

2006	Ciclo Médio (s)	Média Cav.	Produtividade ideal (pc)	Custo Médio teórico (\$) 0,2673	Preço de venda (\$) 0,4386	Faturamento ideal (\$)	Faturamento real (\$)
Janeiro	23,56	7	9.144.448	2.444.311,01	4.010.754,99	1.566.443,98	1.124.140,98
Fevereiro	22,28	7	9.669.803	2.584.738,21	4.241.175,38	1.656.437,17	1.402.236,58
Março	22,11	7	10.953.114	2.927.767,29	4.804.035,67	1.876.268,38	1.591.803,46
Abril	21,33	5	8.109.750	2.167.736,08	3.556.936,20	1.389.200,11	1.175.978,60
Maio	23,50	6	8.185.095	2.187.875,84	3.589.982,58	1.402.106,74	1.275.989,12
Junho	24,44	6	7.895.254	2.110.401,31	3.462.858,27	1.352.456,96	1.312.488,82
Julho	24,47	6	8.077.417	2.159.093,63	3.542.755,20	1.383.661,57	1.371.111,24
Agosto	25,15	8	10.639.686	2.843.987,99	4.666.566,16	1.822.578,16	1.806.296,83
Setembro	29,80	8	8.472.483	2.264.694,77	3.716.031,14	1.451.336,38	1.440.741,07
Outubro	27,29	8	9.427.629	2.520.005,28	4.134.958,15	1.614.952,88	1.604.829,29
Novembro	27,22	8	8.611.701	2.301.907,63	3.777.091,97	1.475.184,35	1.365.894,70
Dezembro	27,01	8	9.747.828	2.605.594,40	4.275.397,32	1.669.802,92	1.087.324,57
						18.660.429,60	16.558.835,27

5.3.2 Análise da OEE

Um estudo dos dados obtidos na empresa sob o enfoque da eficiência global de equipamento foi proposto à direção da empresa com o intuito de apresentar a real situação operacional nos setores de moldagem por sopro e injeção.

Todo o levantamento dos dados, assim como na análise da ociosidade, esteve relacionado aos produtos manufaturados durante cada mês do ano de 2006. Dessa forma, foi possível apresentar dados mensais relacionados a cada processo, obedecendo aos critérios estabelecidos para a obtenção do índice OEE.

Observou-se também que as características de produção da empresa, que conta com um mix muito grande de produtos, tornariam muito complexa uma abordagem do processo por produto, além de se encaixar no perfil industrial descrito por Dal et al. (2000). Segundo ele, em indústrias onde a capacidade de utilização é prioridade maior, o OEE é a melhor forma de mensurar os processos.

Sendo assim, o método foi iniciado através do levantamento dos dados já coletados pela empresa e organizados em tabelas. Cada setor apresentou seus próprios resultados mensais (índices de disponibilidade, performance e qualidade), e por fim, um índice de eficiência global de equipamento anual.

No caso específico do estudo em questão, utilizaram-se os dados já coletados pela metodologia empregada antes pela empresa. A intenção é apresentar os mesmos dados sob um enfoque diferenciado e mais completo para que possa ser medida a verdadeira eficiência do processo.

Índice de disponibilidade (ID)

No cálculo do ID (Tabelas 15 e 16), se fez necessário a abordagem de todo o tempo planejado de operação da empresa, que correspondeu ao tempo disponível de utilização descontando as chamadas paradas programadas (testes de máquinas, moldes e matérias-primas, manutenções preventivas), além do tempo relacionado às paradas não programadas, que corresponder am a todo evento ocorrido durante o período programado para produzir (manutenções corretivas, micro paradas, tempos gastos com troca de cores e ferramentas – *Setup*).

A equação a seguir demonstra a forma de cálculo do índice de disponibilidade adotada.

Tabela 15:: Índice de dis poni bili dade no setor de sopro

2006	Tempo disponível (min)	Paradas programadas (min)	Tempo planejado (min)	Paradas não programadas - Manutenção Corretiva, Setup (min)	ID
Janeiro	160.300	120	160.180	6.795	95,76%
Fevereiro	160.300	69	160.231	14.816	90,75%
Março	180.189	606	179.583	12.746	92,90%
Abril	180.189	0	180.189	2.905	98,39%
Maio	166.970	511	166.459	4.868	97,08%
Junho	167.500	2.175	165.325	2.674	98,38%
Julho	171.575	495	171.080	6.692	96,09%
Agosto	174.211	390	173.821	5.951	96,58%
Setembro	164.375	1.876	162.499	23.897	85,29%
Outubro	167.500	11.624	155.876	24.368	84,37%
Novembro	152.611	2.050	150.561	25.265	83,22%
Dezembro	171.412	0	171.412	12.075	92,96%

Tabela 16: Índice de disponibilidade no setor de injeção

2006	Tempo disponível (min)	Paradas programadas (min)	Tempo planejado (min)	Paradas não programadas - Manutenção Corretiva, Setup (min)	ID
Janeiro	512.960	3.176	509.784	85.016	83,32%
Fevereiro	512.960	36.591	476.369	83.211	82,53%
Março	576.603	34.407	542.196	101.633	81,26%
Abril	576.603	39.436	537.167	77.769	85,52%
Maio	534.304	33.733	500.571	126.948	74,64%
Junho	536.000	36.284	499.716	138.849	72,21%
Julho	549.040	29.725	519.315	160.138	69,16%
Agosto	557.475	28.714	528.761	114.362	78,37%
Setembro	526.000	10.995	515.005	120.152	76,67%
Outubro	536.000	10.184	525.816	102.363	80,53%
Novembro	488.355	31.220	457.135	114.449	74,96%
Dezembro	548.518	9.186	539.332	102.709	80,96%

Índice de performance (IP)

Também conhecido como índice de eficiência, o cálculo do IP (Tabelas 17 e 18), foi obtido pela simples razão entre a quantidade real produzida e a quantidade teórica, ou seja, a que deveria ter sido produzida num dado intervalo de tempo (aplicação muito semelhante ao método já utilizado antes pela empresa).

O diferencial está relacionado com a composição da quantidade real produzida que, neste caso, considera todas as peças que são produzidas pela máquina contabilizando o descarte, que corresponde à rejeição do processo.

Dessa forma, a equação seguinte facilita a visualização dos fatores à compõe.

$$IP = \frac{Quantidade\ real\ (peças\ boas\ +\ peças\ rejeitadas)}{Quantidade\ teórica}$$
 (6)

Tabela 17: Índice de performance no setor de sopro

2006	Produção total (pç)	Rejeição (pç)	Produção Teórica (pç)	IP
Janeiro	327.623	9.950	398.042	84,81%
Fevereiro	845.259	17.559	1.095.848	78,74%
Março	435.761	7.846	538.867	82,32%
Abril	154.011	3.583	165.636	95,14%
Maio	384.780	6.296	427.982	91,38%
Junho	221.092	3.052	244.901	91,52%
Julho	365.084	8.260	432.634	86,30%
Agosto	275.537	7.328	312.268	90,58%
Setembro	801.821	19.976	997.148	82,41%
Outubro	600.655	15.827	800.023	77,06%
Novembro	356.170	9.703	509.446	71,82%
Dezembro	338.881	9.009	441.003	78,89%

Tabela 18: Índice de performance no setor de injeção

2006	Produção total (pç)	Rejeição (pç)	Produção Teórica (pç)	IP
Janeiro	4.236.014	116.289	5.486.232	79,33%
Fevereiro	3.706.683	128.186	4.660.221	82,29%
Março	5.124.758	152.651	6.408.666	82,35%
Abril	3.054.218	122.726	3.929.927	80,84%
Maio	4.038.860	159.931	5.632.858	74,54%
Junho	4.339.749	171.661	6.133.182	73,56%
Julho	5.107.167	157.435	6.568.508	80,15%
Agosto	5.850.408	143.250	7.301.321	82,09%
Setembro	5.028.254	146.146	6.410.921	80,71%
Outubro	5.269.400	121.524	6.453.516	83,53%
Novembro	4.349.405	110.165	6.046.846	73,75%
Dezembro	3.795.139	102.055	5.413.238	71,99%

Índice de qualidade (IQ)

Para que o índice de qualidade (Tabelas 19 e 20) pudesse ser verificado houve a necessidade de mensurar toda a quantidade de rejeição gerada no processo no período, incluindo as peças rejeitadas após classificação de lotes reprovados. Esta medida contribui para obter um valor que deveria ser subtraído da quantidade total produzida.

A equação seguiu o seguinte formato:

$$IQ = \frac{Quantidade\ total\ produzida\ -\ Rejeições}{Quantidade\ total\ produzida}$$
(7)

Tabela 19: Índice de Qualidade no setor de sopro

2006	Produção total (pç)	Rejeição (pç)	% Reprovação	Rejeição da reprovação (pç)	Total (pç)	IQ
Janeiro	327.623	9.950	8,11%	3.902	313.771	95,77%
Fevereiro	845.259	17.559	6,72%	4.192	823.508	97,43%
Março	435.761	7.846	2,68%	1.781	426.134	97,79%
Abril	154.011	3.583	5,50%	772	149.656	97,17%
Maio	384.780	6.296	3,02%	2.037	376.447	97,83%
Junho	221.092	3.052	0,79%	105	217.935	98,57%
Julho	365.084	8.260	5,39%	3.578	353.246	96,76%
Agosto	275.537	7.328	1,68%	565	267.644	97,14%
Setembro	801.821	19.976	2,27%	973	780.872	97,39%
Outubro	600.655	15.827	3,74%	1.262	583.566	97,15%
Novembro	356.170	9.703	3,64%	3.194	343.273	96,38%
Dezembro	338.881	9.009	3,03%	2.520	327.352	96,60%

Tabela 20: Índice de Qualidade no setor de injeção

2006	Produção total (pç)	Rejeição (pç)	% Reprovação	Rejeição da reprovação (pç)	Total (pç) IQ
Janeiro	4.236.014	116.289	5,88%	15.623	4.104.102	96,89%
Fevereiro	3.706.683	128.186	3,78%	8.016	3.570.481	96,33%
Março	5.124.758	152.651	3,22%	4.728	4.967.379	96,93%
Abril	3.054.218	122.726	5,37%	5.506	2.925.986	95,80%
Maio	4.038.860	159.931	6,45%	23.189	3.855.740	95,47%
Junho	4.339.749	171.661	3,07%	1.761	4.166.327	96,00%
Julho	5.107.167	157.435	3,40%	3.125	4.946.607	96,86%
Agosto	5.850.408	143.250	3,56%	10.630	5.696.528	97,37%
Setembro	5.028.254	146.146	3,18%	1.306	4.880.802	97,07%
Outubro	5.269.400	121.524	1,66%	2.384	5.145.492	97,65%
Novembro	4.349.405	110.165	1,82%	2.033	4.237.207	97,42%
Dezembro	3.795.139	102.055	2,65%	2.590	3.690.494	97,24%

O índice OEE

Posterior aos cálculos dos fatores relacionados à disponibilidade, performance e qualidade, viabilizou-se a obtenção do índice de eficiência global de equipamento dos setores de sopro e injeção (Tabelas 21 e 22). Conforme já apresentado da literatura, a equação utilizada foi a seguir:

$$\% OEE = ID \times IP \times IQ$$
 (8)

Tabela 21: Índice de eficiência global de equipamento no setor de sopro

2006	ID	IP	IQ	OEE
Janeiro	0,96	0,85	0,96	78%
Fevereiro	0,91	0,79	0,97	70%
Março	0,93	0,82	0,98	75%
Abril	0,98	0,95	0,97	91%
Maio	0,97	0,91	0,98	87%
Junho	0,98	0,92	0,99	89%
Julho	0,96	0,86	0,97	80%
Agosto	0,97	0,91	0,97	85%
Setembro	0,85	0,82	0,97	68%
Outubro	0,84	0,77	0,97	63%
Novembro	0,83	0,72	0,96	58%
Dezembro	0,93	0,79	0,97	71%

Em relação ao ano, é possível observar um índice OEE no setor de sopro no valor de 76%.

Tabela 22: Índice de eficiência global de equi pamento no setor de injeção

2006	ID	IP	IQ	OEE
Janeiro	0,83	0,79	0,97	64%
Fevereiro	0,83	0,82	0,96	65%
Março	0,81	0,82	0,97	65%
Abril	0,86	0,81	0,96	66%
Maio	0,75	0,75	0,95	53%
Junho	0,72	0,74	0,96	51%
Julho	0,69	0,80	0,97	54%
Agosto	0,78	0,82	0,97	63%
Setembro	0,77	0,81	0,97	60%
Outubro	0,81	0,84	0,98	66%
Novembro	0,75	0,74	0,97	54%
Dezembro	0,81	0,72	0,97	57%

Assim, têm-se um índice OEE anual para o setor de injeção correspondente, em média, à 60%.

5.3.3 Considerações finais

Ociosidade

Os resultados apresentados pela análise dos tempos de paradas planejadas e ociosidade indicaram claramente a necessidade de se analisar mais a fundo a questão da não utilização de recursos disponíveis (como no caso, a subutilização de máquinas e equipamentos) principalmente no setor de sopro.

O maior benefício do estudo foi ter apresentado aos gestores um resultado quantificado do quanto realmente significa o impacto financeiro da falta de ordem de produção na produtividade da empresa. Por parte dos departamentos, principalmente o comercial, não era novidade o fato do setor de sopro possuir uma subutilização de equipamentos. A importância do trabalho foi a viabilização da tomada de decisões pelos responsáveis.

Após a apresentação do estudo à empresa, foi sugerido aos gerentes de produção e de cadeia de suprimentos (departamento responsável também pelo planejamento e controle da produção) que solicitassem junto ao departamento comercial, periodicamente, as informações referentes à demanda prevista de vendas de peças sopradas. Essa prática auxiliaria no dimensionamento correto da capacidade instalada a curto e médio prazo.

Eficiência

A análise dos dados da empresa sob a abordagem da OEE resultou em valores diferentes para a eficiência quando comparados à metodologia utilizada anteriormente. A Tabela 23 apresenta a comparação dos índices de eficiência dos setores de sopro e injeção.

Tabela 23: Comparação do índice de eficiência anterior versus OEE

2006	Eficiência Anterior	OEE
SOPRO	80,25%	76%
INJEÇÃO	76,55%	60%

De acordo com Hansen (2006), o setor de sopro encontra-se muito bem, mas com um longo caminho a percorrer a fim de atingir os níveis das organizações de classe mundial. Já no setor de injeção foi obtido um valor inaceitável, inferior a 65%, onde certamente implica na existência de pontos com grandes deficiências no processo.

Se avaliados separadamente, alguns dos indicadores que compõe o índice OEE obtidos na empresa representam valores que se aproximam das organizações de nível classe mundial, conforme mostra a Tabela 24.

Tabela 24: Indicadores individuais do OEE x Classe Mundial

2006	ID	IP	IQ
SOPRO	92,6%	84,2%	97,2%
INJEÇÃO	78,3%	78,8%	96,8%
CLASSE MUNDIAL	90,0%	95,0%	99,9%

Assim, foi possível observar que ambos os processos apresentaram um bom desempenho quanto ao índice de qualidade. No setor de sopro, foi constatado um índice de disponibilidade entre os níveis de classe mundial e um índice de performance muito bom, porém, ainda na

faixa que representa uma necessidade de melhoria contínua. Neste mesmo estágio, encontramse os índices de disponibilidade e performance do setor de injeção.

Os resultados foram apresentados aos gestores dos processos com intuito de se buscar melhorias dos níveis dos indicadores que encontraram-se abaixo do nível classe mundial.

Este processo de melhoria resultou em planos de ação que visavam uma análise da metodologia aplicada no estudo em questão, a fim de se alterar o método de cálculo da eficiência de equipamento existente nos setores de sopro e injeção. Não somente do índice global mas também dos indicadores individuais.

6 CONCLUSÃO

O trabalho atingiu a finalidade, em abordar os impactos na produtividade gerados por fatores como a ociosidade de equipamento e a eficiência de processo em uma indústria de embalagens plásticas com o objetivo de monitorar a produção e realizar melhorias.

Foram apresentados os fundamentos para a execução do monitoramento das rotinas e obtenção de melhorias na produtividade, relacionados à medição de desempenho, áreas de decisão na produção e à importância da utilização de indicadores de desempenho. Serviram de suporte ao estudo os conceitos sobre planejamento e controle de capacidade e análise de parâmetros e definições do OEE.

Com base no dimensionamento correto da capacidade da fábrica e na análise da demanda, a empresa iniciou um estudo voltado para atualização das máquinas de sopro (*upgrade*) e modernização do setor, com o intuito de diminuir o índice de ociosidade e alcançar maiores níveis de utilização de equipamentos e produtividade, tornando a empresa mais lucrativa e competitiva neste mercado. O desenvolvimento de novos projetos *standard* contribuiu para alavancar as operações, principalmente no setor de sopro.

Quanto ao índice OEE, os resultados foram medidos com sucesso nos dois setores da empresa, pois cumpriram com a idéia inicial: traduzir a eficiência de uma forma global, ou seja, relacionada com os demais aspectos da produção (disponibilidade, performance e qualidade). Dessa forma, os índices demonstraram a eficiência das funções da empresa de uma forma mais completa.

REFERÊNCIAS

- BAMBER, C.J.; CASTKA, P.; SHARP, J.M.; MOTARA, Y. Cross-functional team working for overall equipment effectiveness (OEE). Journal of Quality in Maintenance Engineering. Vol. 9, N. 3. p. 223-238, 2003.
- BLS **Bureau of Labor Statistics.** U. S. Departament of Labor.: Disponível em: http://stats.bls.gov/bls/glossary.htm Acesso em: 12 mai. 2007.
- BRITO, S. G. **Medidas Completas de Eficiência Técnica**. Florianópolis, 2003. Dissertação (Mestrado em Engenharia de Produção) Programa de Pós-Graduação em Engenharia de Produção. UFSC, 2003.
- CAMPOS, V.F. **TQC:** Controle da Qualidade Total (no estilo japonês). 3.ed. Belo Horizonte: Fundação Cristiano Ottoni, 1992.
- CONTADOR, J.C. **Modelo para aumentar a competitividade industrial**. São Paulo: Edgard Blücher, 1996.
- DAL, B.; TUGWELL, P; GREATBANKS, R. Overall equipment effectiveness as a measure of operational improvement: A practical analysis. International Journal of Operations & Production Management. Vol. 20, N. 5. p. 1488-1502, 2000.
- FLORES, J.; KARDEC, A.; SEIXAS, E. **Gestão estratégica e indicadores de desempenho.** Rio de Janeiro: Quality Mark, 2002.
- HANSEN, R. C. **Eficiência Global dos Equipamentos:** uma poderosa ferramenta de produção/manutenção para o aumento dos lucros. Porto Alegre: Bookman, 2006.
- JENNINGS, J. Menos é mais os segredos da produtividade: o que as empresas vencedoras fazem de diferente. Rio de Janeiro: Campus, 2003.
- MARTINS, P.G.; LAUGENI, F.P. **Administração da Produção**. 2.ed. São Paulo: Saraiva, 2006.
- SLACK, N.; CHAMBERS S.; JOHNSTON, R. **Administração da produção.** São Paulo: Atlas, 2002.
- TOOLKIT. **Software OEE Tool Kit**. Disponível em: http://www.oeetoolkit.nl. Acesso em: 23 mar. 2007.
- TUBINO, D. F. **Manual de Planejamento e Controle da Produção.** 2.ed. São Paulo: Atlas, 2000.
- TUBINO, D. F. **Sistemas de produção:** A produtividade no chão de fábrica. Porto Alegre: Bookman, 1999.
- VORNE. **The Fast Guide to OEE**TM. Vorne Industries. Disponível em: http://www.oee.com. Acesso em: 12 mar. 2007.

BIBLIOGRAFIA

BERGAMO FILHO, V. **Os caminhos da qualidade e da produtividade**. São Paulo: Edgard Blücher Ltda, 1992.

CAMPOS, V. F.; Fundação Christiano Ottoni. **Gerenciamento da rotina: do trabalho do dia-a-dia.** 3. ed. Belo Horizonte: Bloch, 1994.

GEFANUC. **Manager's Guide to Overall Equipment Effectiveness (OEE)**. General Electric Fanuc Automation. Disponível em: http://www.gefanacautomation.com>. Acesso em: 03 abr. 2007.

HARMON, R. L. Reinventando a fabrica II: conceitos modernos de produtividade na pratica. Rio de Janeiro: Campus, c1993.

KMITA S.F. Manutenção Produtiva Total (TPM): uma ferramenta para o aumento do índice de eficiência global da empresa. Anais do XXIII Encontro Nacional de Engenharia de Produção (ENEGEP), Ouro Preto, 2003.

PAIVA, E. L. Estratégia da produção e de operações : conceitos, melhores práticas, visão de futuro. Porto Alegre: Bookman, 2004.

STONER, James A. F. Administração. 5. ed. Rio de Janeiro: Prentice-Hall do Brasil, 1992.

WWBS. Total Productive Maintenance, The six big losses, and Overall Equipment Effectiveness and the TPM vision. ERP Optimization: Worldwide Busines Solutions. Disponível em: http://www.wwbsgroup.com. Acesso em: 07 abr. 2007.

YOSHIMOTO, T. Qualidade, produtividade e cultura: o que podemos aprender com os japoneses. 2. ed. Sao Paulo: Saraiva, 1992.

APÊNDICE A – Dados Coletados: Paradas de Máquina

janeiro/2006

				00000	ı	IN IEO ÃO	
		Total Mês (min)	Total Mês (horas)	SOPRO	%	INJEÇÃO	%
1	Queda de Energia	(11111)	(IIOI as)	(min)		(min)	/0
2	Falta de Matéria Prima no Almoxarifado	107	2			107	100.00/
4		107		0		107	100,0%
5	Manutenção Preventiva Geral	2490	11	20	1 20/	2450	00.00/
6	Troca de Molde / Produção	2480 2027	41	30	1,2%	2450	98,8%
7	Teste de produtos		34	120	5,9%	1907	94,1%
	Testes de Matéria Prima	1269	21	0		1269	100,0%
8	Testes de Máquina / Molde	204	0	4.45	00.40/	000	04.00/
9	Troca de Côr	381	6	145	38,1%	236	61,9%
13	Aguardando Ordem de Produção	259259	4321	114438	44,1%	144821	55,9%
3	Manutenção Preventiva Diária - Engraxar	40050	400			40050	400.00/
17	Trabalhando c/ Cavidades a Menos	10950	183	0	400.00/	10950	100,0%
50	Troca de Faca	60	1	60	100,0%	0	
51	Regulagem da Faca de Corte	64	1	64	100,0%	0	4.40/
52	Regulagem do Parison	516	9	495	95,9%	21	4,1%
53	Regulagem Geral	9416	157	1618	17,2%	7798	82,8%
54	Regulagem de Pino de Sopro	123	2	123	100,0%	0	
55	Falta de Matéria Prima no Funil	995	17	60	6,0%	935	94,0%
56	Mat-Prima Diferente do padrão / Contaminado	948	16	232	24,5%	716	75,5%
57	Regulagem nos Automatismos / Robot	1873	31	253	13,5%	1620	86,5%
58	Amolar / Regular a Bucha de Corte	20	0	20	100,0%	0	
59	Limpeza de Macho e Bucha	120	2	120	100,0%	0	
60	Limpeza do Cabeçote / Canhão	120	2	120	100,0%	0	
61	Falta de Colaborador						
62	Início de Produção - 2ª Feira	3010	50	484	16,1%	2526	83,9%
63	Limpeza do Molde	2996	50	55	1,8%	2941	98,2%
64	Desentupir Cavidades	758	13	0		758	100,0%
65	Desenroscar Capilar	4164	69	0		4164	100,0%
66	Desenroscar Tampas / Frascos do Molde	3674	61	0		3674	100,0%
67	Limpeza de Final de Turno	1941	32	219	11,3%	1722	88,7%
68	Falta de Haste de Faca						
69	Falta de Placa Celeron						
72	Regulagem de Início de Produção	2941	49	195	6,6%	2746	93,4%
74	Desentupir Bico / Canal	1374	23	0		1374	100,0%
76	Desentupir Pé do Funil	133	2	0		133	100,0%
77	Troca do Bico da Injetora	129	2	0		129	100,0%
78	Manutenção da Haste da Faca de Corte	60	1	60	100,0%	0	
89	Máquina Parada p/ Falta de Conhecimento Técnico	28	0	0		28	100,0%
98	Diferença de Informações	926	15	447	48,3%	479	51,7%
100	Manutenção Corretiva - Mecânica	7744	129	519	6,7%	7225	93,3%
101	Manutenção Corretiva - Elétrica	2923	49	1095	37,5%	1828	62,5%
103	Manutenção Corretiva no Molde	27564	459	0		27564	100,0%
104	Manutenção nos Periféricos / Robots	2260	38	0		2260	100,0%
105	Manutenção no Cilindro de Aciont. de Faca						
107	Manutenção na Bomba Hidráulica Principal						
111	Manutenção Bloco Comando de Válvula (Hidr.)						
112	Manutenção Bloco Comando de Válvula (Pneu)						
114	Manutenção ou Troca de Mangueira Hidráulica	272	5	152	55,9%	120	44,1%
123	Esperando Mecânico Disponível						
126	Manutenção de Geladeira	325	5	0		325	100,0%
127	Manutenção das Esteiras Transportadoras						·
131	Manutenção do Cilindro do Canhão						
133	Manutenção nas Portas das Máquinas						
137	Manutenção nos Alimentadores de Mat. Prima						
145	Manutenção no Cilindro de Calibração						
209	Troca ou Reparo de Sensor Indultivo						
210	Troca ou Reparo Resistência do Canhão						
215	Manutenção de Túnel de Resfriamento						
224	Manutenção Programador Lauditec						
	, , , , , , , , , , , , , , , , , , , ,	1					

fevereiro/2006

		Total Mês	Total Mês	SOPRO		INJEÇÃO	
		(min)	(horas)	(min)	%	(min)	%
1	Queda de Energia						
2	Falta de Matéria Prima no Almoxarifado						
4	Manutenção Preventiva Geral						
5	Troca de Molde / Produção	3787	63	0		3787	100,0%
6	Teste de produtos	36537	609	40	0,1%	36497	99,9%
7	Testes de Matéria Prima	35	1	0	0,170	35	100,0%
8	Testes de Máquina / Molde						
9	Troca de Côr	453	8	0		453	100,0%
13	Aguardando Ordem de Produção	153634	2561	74892	48,7%	78742	51,3%
3	Manutenção Preventiva Diária - Engraxar	88	1	29	33,0%	59	67,0%
17	Trabalhando c/ Cavidades a Menos	9184	153	0	00,070	9184	100,0%
50	Troca de Faca	320	5	320	100,0%	0	.00,070
51	Regulagem da Faca de Corte	429	7	429	100,0%	0	
52	Regulagem do Parison	976	16	976	100,0%	0	
53	Regulagem Geral	10035	167	3704	36,9%	6331	63,1%
54	Regulagem de Pino de Sopro	528	9	528	100,0%	0	00,170
55	Falta de Matéria Prima no Funil	180	3	25	13,9%	155	86,1%
56	Mat-Prima Diferente do padrão / Contaminado	2045	34	463	22,6%	1582	77,4%
57	Regulagem nos Automatismos / Robot	2367	39	344	14,5%	2023	85,5%
58	Amolar / Regular a Bucha de Corte	539	9	539	100,0%	0	00,070
59	Limpeza de Macho e Bucha	30	1	30	100,0%	0	
60	·	320	5	0	100,0%	320	100,0%
61	Limpeza do Cabeçote / Canhão Falta de Colaborador	320	5	0		320	100,076
62		3944	66	722	10 20/	3222	81,7%
63	Início de Produção - 2ª Feira	5177	86	37	18,3% 0,7%	5140	99,3%
	Limpeza do Molde	222	4	0	0,7 %	222	
64	Desentupir Cavidades	4808		0		4808	100,0%
65	Desenroscar Capilar		80	1		3660	100,0%
66	Desenroscar Tampas / Frascos do Molde	3660	61	0	42.00/		100,0%
67	Limpeza de Final de Turno	4870	81	675	13,9%	4195	86,1%
68	Falta de Haste de Faca						
69	Falta de Placa Celeron	2500	50	600	47.00/	0000	00.40/
72	Regulagem de Início de Produção	3520	59	620	17,6%	2900	82,4%
74	Desentupir Bico / Canal	1026	17	0		1026	100,0%
76	Desentupir Pé do Funil	323	5	0		323	100,0%
77	Troca do Bico da Injetora	84	1	0		84	100,0%
78	Manutenção da Haste da Faca de Corte						
89	Máquina Parada p/ Falta de Conhecimento Técnico	000	4.5	075	44.50/	500	E0 E0/
98	Diferença de Informações	903	15	375	41,5%	528	58,5%
100	Manutenção Corretiva - Mecânica	4282	71	645	15,1%	3637	84,9%
101	Manutenção Corretiva - Elétrica	3302	55	947	28,7%	2355	71,3%
103	Manutenção Corretiva no Molde	27116	452	2679	9,9%	24437	90,1%
104	Manutenção nos Periféricos / Robots	1876	31	171	9,1%	1705	90,9%
105	Manutenção no Cilindro de Aciont. de Faca	ļ					
107	Manutenção na Bomba Hidráulica Principal						
111	Manutenção Bloco Comando de Válvula (Hidr.)						
112	Manutenção Bloco Comando de Válvula (Pneu)			_			
114	Manutenção ou Troca de Mangueira Hidráulica	61	1	0		61	100,0%
123	Esperando Mecânico Disponível	284	5	0		284	100,0%
126	Manutenção de Geladeira	58	1	0		58	100,0%
127	Manutenção das Esteiras Transportadoras	478	8	277	57,9%	201	42,1%
131	Manutenção do Cilindro do Canhão						
133	Manutenção nas Portas das Máquinas						
137	Manutenção nos Alimentadores de Mat. Prima						
145	Manutenção no Cilindro de Calibração						
209	Troca ou Reparo de Sensor Indultivo						
210	Troca ou Reparo Resistência do Canhão						
215	Manutenção de Túnel de Resfriamento						
224	Manutenção Programador Lauditec						

março/2006

		Total Mês	Total Mês	SOPRO	1	INJEÇÃO	
		(min)	(horas)	(min)	%	(min)	%
1	Queda de Energia		, ,	(,		(critic)	
2	Falta de Matéria Prima no Almoxarifado						
4	Manutenção Preventiva Geral						
5	Troca de Molde / Produção	2546	42	560	22,0%	1986	78,0%
6	Teste de produtos	36046	601	1835	5,1%	34211	94,9%
7	Testes de Matéria Prima	181	3	20	11,0%	161	89,0%
8	Testes de Máquina / Molde						
9	Troca de Côr	977	16	70	7,2%	907	92,8%
13	Aguardando Ordem de Produção	192626	3210	107564	55,8%	85062	44,2%
3	Manutenção Preventiva Diária - Engraxar	105	2	70	66,7%	35	33,3%
17	Trabalhando c/ Cavidades a Menos	15347	256	0		15347	100,0%
50	Troca de Faca	138	2	138	100,0%	0	
51	Regulagem da Faca de Corte	219	4	166	75,8%	53	24,2%
52	Regulagem do Parison	338	6	338	100,0%	0	
53	Regulagem Geral	9583	160	2751	28,7%	6832	71,3%
54	Regulagem de Pino de Sopro	243	4	243	100,0%	0	
55	Falta de Matéria Prima no Funil	232	4	40	17,2%	192	82,8%
56	Mat-Prima Diferente do padrão / Contaminado	605	10	17	2,8%	588	97,2%
57	Regulagem nos Automatismos / Robot	1917	32	214	11,2%	1703	88,8%
58	Amolar / Regular a Bucha de Corte	43	1	43	100,0%	0	
59	Limpeza de Macho e Bucha	84	1	84	100,0%	0	
60	Limpeza do Cabeçote / Canhão	870	15	770	88,5%	100	11,5%
61	Falta de Colaborador	100	2	90	90,0%	10	10,0%
62	Início de Produção - 2ª Feira	3785	63	258	6,8%	3527	93,2%
63	Limpeza do Molde	5227	87	19	0,4%	5208	99,6%
64	Desentupir Cavidades	249	4	0	-,	249	100,0%
65	Desenroscar Capilar	4611	77	0		4611	100,0%
66	Desenroscar Tampas / Frascos do Molde	3032	51	45	1,5%	2987	98,5%
67	Limpeza de Final de Turno	3156	53	294	9,3%	2862	90,7%
68	Falta de Haste de Faca				-,		,
69	Falta de Placa Celeron						
72	Regulagem de Início de Produção	3861	64	1366	35,4%	2495	64,6%
74	Desentupir Bico / Canal	366	6	0		366	100,0%
76	Desentupir Pé do Funil	349	6	0		349	100,0%
77	Troca do Bico da Injetora	99	2	0		99	100,0%
78	Manutenção da Haste da Faca de Corte						,.,.
89	Máquina Parada p/ Falta de Conhecimento Técnico						
98	Diferença de Informações	1697	28	318	18,7%	1379	81,3%
100	Manutenção Corretiva - Mecânica	24046	401	1785	7,4%	22261	92,6%
101	Manutenção Corretiva - Elétrica	1046	17	562	53,7%	484	46,3%
103	Manutenção Corretiva no Molde	26360	439	1107	4,2%	25253	95,8%
104	Manutenção nos Periféricos / Robots	894	15	0	,_,	894	100,0%
105	Manutenção no Cilindro de Aciont. de Faca	1					122,070
107	Manutenção na Bomba Hidráulica Principal	1					
111	Manutenção Bloco Comando de Válvula (Hidr.)	470	8	470	100,0%	0	
112	Manutenção Bloco Comando de Válvula (Pneu)	1			122,070		
114	Manutenção ou Troca de Mangueira Hidráulica	1					
123	Esperando Mecânico Disponível	220	4	0		220	100,0%
126	Manutenção de Geladeira	401	7	42	10,5%	359	89.5%
127	Manutenção das Esteiras Transportadoras	124	2	103	83,1%	21	16,9%
131	Manutenção do Cilindro do Canhão	1	-		,.,5		, . , . ,
133	Manutenção nas Portas das Máquinas	1					
137	Manutenção nos Alimentadores de Mat. Prima	1					
145	Manutenção no Cilindro de Calibração	<u> </u>					
209	Troca ou Reparo de Sensor Indultivo	†					
210	Troca ou Reparo Resistência do Canhão	<u> </u>					
215	Manutenção de Túnel de Resfriamento	<u> </u>					
224	Manutenção Programador Lauditec	†					
<u> </u>	1 , 5 ,	Ī			I.		

abril/2006

		Total Mês	Total Mês	SOPRO		INJEÇÃO	
		(min)	(horas)	(min)	%	(min)	%
1	Queda de Energia	` ,	(1 111)	()		()	,,,
2	Falta de Matéria Prima no Almoxarifado	266	4	216	81,2%	50	18,8%
4	Manutenção Preventiva Geral	200	•	2.0	01,270	- 00	10,070
5	Troca de Molde / Produção	3392	57	625	18,4%	2767	81,6%
6	Teste de produtos	37819	630	0	10,470	37819	100,0%
7	Testes de Matéria Prima	1617	27	0		1617	100,0%
8	Testes de Máquina / Molde	1017	21			1017	100,070
9	Troca de Côr	410	7	150	36,6%	260	63,4%
13	Aguardando Ordem de Produção	205618	3427	117103	57,0%	88515	43,0%
3	Manutenção Preventiva Diária - Engraxar	203010	3421	117103	37,076	00313	43,076
17	Trabalhando c/ Cavidades a Menos	5510	92	0		5510	100,0%
50	Troca de Faca	•		15	100.00/	0	100,0%
51		15 82	0 1	82	100,0%		
	Regulagem da Faca de Corte	91			100,0%	0	
52	Regulagem do Parison		2	91	100,0%	0	00.00/
53	Regulagem Geral	7126	119	501	7,0%	6625	93,0%
54	Regulagem de Pino de Sopro	53	1	53	100,0%	0	00.00/
55	Falta de Matéria Prima no Funil	698	12	10	1,4%	688	98,6%
56	Mat-Prima Diferente do padrão / Contaminado	853	14	0		853	100,0%
57	Regulagem nos Automatismos / Robot	2819	47	0		2819	100,0%
58	Amolar / Regular a Bucha de Corte	156	3	156	100,0%	0	
59	Limpeza de Macho e Bucha	94	2	85	90,4%	9	9,6%
60	Limpeza do Cabeçote / Canhão	25	0	0		25	100,0%
61	Falta de Colaborador						
62	Início de Produção - 2ª Feira	3888	65	338	8,7%	3550	91,3%
63	Limpeza do Molde	3346	56	20	0,6%	3326	99,4%
64	Desentupir Cavidades	55	1	0		55	100,0%
65	Desenroscar Capilar	3387	56	0		3387	100,0%
66	Desenroscar Tampas / Frascos do Molde	2690	45	0		2690	100,0%
67	Limpeza de Final de Turno	2301	38	209	9,1%	2092	90,9%
68	Falta de Haste de Faca						
69	Falta de Placa Celeron						
72	Regulagem de Início de Produção	3685	61	264	7,2%	3421	92,8%
74	Desentupir Bico / Canal	1089	18	0		1089	100,0%
76	Desentupir Pé do Funil	100	2	0		100	100,0%
77	Troca do Bico da Injetora	70	1	0		70	100,0%
78	Manutenção da Haste da Faca de Corte						
89	Máquina Parada p/ Falta de Conhecimento Técnico						
98	Diferença de Informações	1558	26	80	5,1%	1478	94,9%
100	Manutenção Corretiva - Mecânica	16567	276	0		16567	100,0%
101	Manutenção Corretiva - Elétrica	908	15	0		908	100,0%
103	Manutenção Corretiva no Molde	18133	302	0		18133	100,0%
104	Manutenção nos Periféricos / Robots	713	12	0		713	100,0%
105	Manutenção no Cilindro de Aciont. de Faca						, ., .,
107	Manutenção na Bomba Hidráulica Principal						
111	Manutenção Bloco Comando de Válvula (Hidr.)						
112	Manutenção Bloco Comando de Válvula (Pneu)						
114	Manutenção ou Troca de Mangueira Hidráulica						
123	Esperando Mecânico Disponível	20	0	0		20	100,0%
126	Manutenção de Geladeira	168	3	0		168	100,0%
127	Manutenção das Esteiras Transportadoras	30	1	0		30	100,0%
131	Manutenção do Cilindro do Canhão	30	ı	U		- 00	100,070
133	Manutenção nas Portas das Máquinas	100	2	0		100	100,0%
137	Manutenção nos Alimentadores de Mat. Prima	100	2	0		100	100,0%
145		100		U		100	100,0%
	Manutenção no Cilindro de Calibração	1					
209	Troca ou Reparo Registância de Caphão	<u> </u>					
210	Troca ou Reparo Resistência do Canhão						
215	Manutenção de Túnel de Resfriamento						
224	Manutenção Programador Lauditec						

maio/2006

		Total Mês	Total Mês	SOPRO		INJEÇÃO	
		(min)	(horas)	(min)	%	(min)	%
1	Queda de Energia	, ,	(2 22)	()		()	,,,
2	Falta de Matéria Prima no Almoxarifado	827	14	324	39,2%	503	60,8%
4	Manutenção Preventiva Geral	02.		021	00,270		00,070
5	Troca de Molde / Produção	5632	94	369	6,6%	5263	93,4%
6	Teste de produtos	33723	562	511	1,5%	33212	98,5%
7	Testes de Matéria Prima	133	2	0	1,570	133	100,0%
8	Testes de Máquina / Molde	133				100	100,070
9	Troca de Côr	1945	32	10	0,5%	1935	99,5%
13	Aguardando Ordem de Produção	151785	2530	103736	68,3%	48049	31,7%
3	Manutenção Preventiva Diária - Engraxar	388	6	0	00,376	388	100,0%
17	Trabalhando c/ Cavidades a Menos	15459	258	17	0,1%	15442	99,9%
50	Troca de Faca	40		40	100,0%	0	99,976
51		84	1	84	-	0	
52	Regulagem da Parisan	221	4	221	100,0%		
	Regulagem do Parison				100,0%	0	00.00/
53	Regulagem Geral	13303	222	1309	9,8%	11994	90,2%
54	Regulagem de Pino de Sopro	238	4	238	100,0%	0	00.00/
55	Falta de Matéria Prima no Funil	551	9	72	13,1%	479	86,9%
56	Mat-Prima Diferente do padrão / Contaminado	1302	22	87	6,7%	1215	93,3%
57	Regulagem nos Automatismos / Robot	3759	63	68	1,8%	3691	98,2%
58	Amolar / Regular a Bucha de Corte	217	4	185	85,3%	32	14,7%
59	Limpeza de Macho e Bucha	291	5	215	73,9%	76	26,1%
60	Limpeza do Cabeçote / Canhão	380	6	0		380	100,0%
61	Falta de Colaborador						
62	Início de Produção - 2ª Feira	3612	60	211	5,8%	3401	94,2%
63	Limpeza do Molde	6319	105	84	1,3%	6235	98,7%
64	Desentupir Cavidades	462	8	0		462	100,0%
65	Desenroscar Capilar	4919	82	10	0,2%	4909	99,8%
66	Desenroscar Tampas / Frascos do Molde	5139	86	0		5139	100,0%
67	Limpeza de Final de Turno	2449	41	199	8,1%	2250	91,9%
68	Falta de Haste de Faca						
69	Falta de Placa Celeron						
72	Regulagem de Início de Produção	7419	124	251	3,4%	7168	96,6%
74	Desentupir Bico / Canal	1340	22	0		1340	100,0%
76	Desentupir Pé do Funil	63	1	0		63	100,0%
77	Troca do Bico da Injetora	514	9	0		514	100,0%
78	Manutenção da Haste da Faca de Corte						
89	Máquina Parada p/ Falta de Conhecimento Técnico	17	0	0		17	100,0%
98	Diferença de Informações	402	7	15	3,7%	387	96,3%
100	Manutenção Corretiva - Mecânica	13760	229	90	0,7%	13670	99,3%
101	Manutenção Corretiva - Elétrica	2056	34	0	,	2056	100,0%
103	Manutenção Corretiva no Molde	34546	576	0		34546	100,0%
104	Manutenção nos Periféricos / Robots	1709	28	0		1709	100,0%
105	Manutenção no Cilindro de Aciont. de Faca						, -, -
107	Manutenção na Bomba Hidráulica Principal						
111	Manutenção Bloco Comando de Válvula (Hidr.)	120	2	120	100,0%	0	
112	Manutenção Bloco Comando de Válvula (Pneu)	84	1	84	100,0%	0	
114	Manutenção ou Troca de Manqueira Hidráulica	1085	18	57	5,3%	1028	94,7%
123	Esperando Mecânico Disponível	101	2	0	0,070	101	100,0%
126	Manutenção de Geladeira	166	3	0		166	100,0%
127	Manutenção das Esteiras Transportadoras	100	<u> </u>			100	100,070
131	Manutenção do Cilindro do Canhão	58	1	0		58	100,0%
133	Manutenção nas Portas das Máquinas	50				50	100,070
137	Manutenção nos Alimentadores de Mat. Prima						
145							
	Manutenção no Cilindro de Calibração Troca ou Reparo de Sensor Indultivo						
209	Troca ou Reparo de Sensor Indultivo						
210	Troca ou Reparo Resistência do Canhão						
215	Manutenção de Túnel de Resfriamento						
224	Manutenção Programador Lauditec						

junho/2006

		Total Mês	Total Mês	SOPRO		INJEÇÃO	
		(min)	(horas)	(min)	%	(min)	%
1	Queda de Energia	()	(()		(11111)	,,
2	Falta de Matéria Prima no Almoxarifado	191	3	0		191	100,0%
4	Manutenção Preventiva Geral	678	11	0		678	100,0%
5	Troca de Molde / Produção	5868	98	180	3,1%	5688	96,9%
6	Teste de produtos	37781	630	2175	5,8%	35606	94,2%
7	Testes de Matéria Prima	31101	030	2175	3,070	33000	34,270
8	Testes de Máquina / Molde						
9	Troca de Côr	691	12	353	51,1%	338	48,9%
13	Aguardando Ordem de Produção	153586	2560	137738	89,7%	15848	10,3%
		100000	2300	137730	09,776	13040	10,3%
17	Manutenção Preventiva Diária - Engraxar	31299	522			24200	400.00/
50	Trabalhando c/ Cavidades a Menos Troca de Faca		-	0	100.00/	31299	100,0%
51		16 22	0	16	100,0%	0	
	Regulagem da Faca de Corte		0	22	100,0%	0	
52	Regulagem do Parison	109	2	109	100,0%	0	00.00/
53	Regulagem Geral	11594	193	705	6,1%	10889	93,9%
54	Regulagem de Pino de Sopro	138	2	138	100,0%	0	05.50/
55	Falta de Matéria Prima no Funil	468	8	68	14,5%	400	85,5%
56	Mat-Prima Diferente do padrão / Contaminado	1616	27	27	1,7%	1589	98,3%
57	Regulagem nos Automatismos / Robot	2299	38	189	8,2%	2110	91,8%
58	Amolar / Regular a Bucha de Corte	400		400	04.00/		40.70/
59	Limpeza de Macho e Bucha	123	2	100	81,3%	23	18,7%
60	Limpeza do Cabeçote / Canhão	183	3	0		183	100,0%
61	Falta de Colaborador	230	4	0		230	100,0%
62	Início de Produção - 2ª Feira	3510	59	106	3,0%	3404	97,0%
63	Limpeza do Molde	7803	130	0		7803	100,0%
64	Desentupir Cavidades	797	13	0		797	100,0%
65	Desenroscar Capilar	4729	79	0		4729	100,0%
66	Desenroscar Tampas / Frascos do Molde	2107	35	0		2107	100,0%
67	Limpeza de Final de Turno	2215	37	165	7,4%	2050	92,6%
68	Falta de Haste de Faca						
69	Falta de Placa Celeron						
72	Regulagem de Início de Produção	4509	75	362	8,0%	4147	92,0%
74	Desentupir Bico / Canal	1811	30	0		1811	100,0%
76	Desentupir Pé do Funil	356	6	0		356	100,0%
77	Troca do Bico da Injetora	466	8	0		466	100,0%
78	Manutenção da Haste da Faca de Corte						
89	Máquina Parada p/ Falta de Conhecimento Técnico						
98	Diferença de Informações	1124	19	0		1124	100,0%
100	Manutenção Corretiva - Mecânica	10280	171	0		10280	100,0%
101	Manutenção Corretiva - Elétrica	14034	234	0		14034	100,0%
103	Manutenção Corretiva no Molde	30472	508	0		30472	100,0%
104	Manutenção nos Periféricos / Robots	1543	26	80	5,2%	1463	94,8%
105	Manutenção no Cilindro de Aciont. de Faca	39	1	0		39	100,0%
107	Manutenção na Bomba Hidráulica Principal						
111	Manutenção Bloco Comando de Válvula (Hidr.)						
112	Manutenção Bloco Comando de Válvula (Pneu)						
114	Manutenção ou Troca de Mangueira Hidráulica						
123	Esperando Mecânico Disponível	309	5	0		309	100,0%
126	Manutenção de Geladeira	175	3	0		175	100,0%
127	Manutenção das Esteiras Transportadoras	60	1	0		60	100,0%
131	Manutenção do Cilindro do Canhão						
133	Manutenção nas Portas das Máquinas						
137	Manutenção nos Alimentadores de Mat. Prima	1					
145	Manutenção no Cilindro de Calibração	1					
209	Troca ou Reparo de Sensor Indultivo	54	1	54	100,0%	0	
210	Troca ou Reparo Resistência do Canhão	1	•		111,070		
215	Manutenção de Túnel de Resfriamento	1					
224	Manutenção Programador Lauditec	1					
		1					<u> </u>

julho/2006

		Total Mês	Total Mês	SOPRO		INJEÇÃO	
		(min)	(horas)	(min)	%	(min)	%
1	Queda de Energia	140	2	0		140	100,0%
2	Falta de Matéria Prima no Almoxarifado	1217	20	0		1217	100,0%
4	Manutenção Preventiva Geral	130	2	0		130	100,0%
5	Troca de Molde / Produção	8699	145	570	6,6%	8129	93,4%
6	Teste de produtos	30090	502	495	1.6%	29595	98,4%
7	Testes de Matéria Prima	30030	302	490	1,070	29393	30,470
8	Testes de Máquina / Molde						
9	Troca de Côr	400	7	0		400	100,0%
13	Aguardando Ordem de Produção	124796	2080	119823	96,0%	4973	4,0%
3	Manutenção Preventiva Diária - Engraxar	124790	2000	119023	90,0%	4973	4,0%
17		20045	494	407	0,4%	20500	00.00/
50	Trabalhando c/ Cavidades a Menos Troca de Faca	29615	_	107		29508	99,6%
51		74	2	74	100,0%	0	
	Regulagem da Faca de Corte	97		97	100,0%	0	0.50/
52	Regulagem do Parison	211	4	191	90,5%	20	9,5%
53	Regulagem Geral	8954	149	1408	15,7%	7546	84,3%
54	Regulagem de Pino de Sopro	708	12	708	100,0%	0	00.00/
55	Falta de Matéria Prima no Funil	355	6	36	10,1%	319	89,9%
56	Mat-Prima Diferente do padrão / Contaminado	996	17	155	15,6%	841	84,4%
57	Regulagem nos Automatismos / Robot	1640	27	20	1,2%	1620	98,8%
58	Amolar / Regular a Bucha de Corte	160	3	70	43,8%	90	56,3%
59	Limpeza de Macho e Bucha	108	2	74	68,5%	34	31,5%
60	Limpeza do Cabeçote / Canhão	520	9	445	85,6%	75	14,4%
61	Falta de Colaborador						
62	Início de Produção - 2ª Feira	4279	71	453	10,6%	3826	89,4%
63	Limpeza do Molde	5274	88	36	0,7%	5238	99,3%
64	Desentupir Cavidades	722	12	0		722	100,0%
65	Desenroscar Capilar	7256	121	0		7256	100,0%
66	Desenroscar Tampas / Frascos do Molde	3309	55	0		3309	100,0%
67	Limpeza de Final de Turno	3187	53	381	12,0%	2806	88,0%
68	Falta de Haste de Faca						
69	Falta de Placa Celeron						
72	Regulagem de Início de Produção	6062	101	639	10,5%	5423	89,5%
74	Desentupir Bico / Canal	905	15	0		905	100,0%
76	Desentupir Pé do Funil	134	2	0		134	100,0%
77	Troca do Bico da Injetora	244	4	0		244	100,0%
78	Manutenção da Haste da Faca de Corte						
89	Máquina Parada p/ Falta de Conhecimento Técnico						
98	Diferença de Informações	1225	20	122	10,0%	1103	90,0%
100	Manutenção Corretiva - Mecânica	37244	621	0		37244	100,0%
101	Manutenção Corretiva - Elétrica	5243	87	161	3,1%	5082	96,9%
103	Manutenção Corretiva no Molde	35350	589	545	1,5%	34805	98,5%
104	Manutenção nos Periféricos / Robots	1486	25	0	,	1486	100,0%
105	Manutenção no Cilindro de Aciont. de Faca	20	0	20	100,0%	0	,
107	Manutenção na Bomba Hidráulica Principal		•		100,070		
111	Manutenção Bloco Comando de Válvula (Hidr.)						
112	Manutenção Bloco Comando de Válvula (Pneu)	115	2	115	100,0%	0	
114	Manutenção ou Troca de Mangueira Hidráulica	69	1	69	100,0%	0	
123	Esperando Mecânico Disponível	- 55	•	- 55	100,070		
126	Manutenção de Geladeira	80	1	0		80	100,0%
127	Manutenção das Esteiras Transportadoras	30		0		00	100,070
131	Manutenção do Cilindro do Canhão	113	2	0		113	100,0%
133	Manutenção nas Portas das Máquinas	35	1	0		35	100,0%
137	Manutenção nos Alimentadores de Mat. Prima	35	ı	U		30	100,0%
145		1					
209	Manutenção no Cilindro de Calibração Troca ou Penaro de Sensor Indultivo	1					
	Troca ou Reparo Registância de Caphão	1					
210	Troca ou Reparo Resistência do Canhão						
215	Manutenção de Túnel de Resfriamento						
224	Manutenção Programador Lauditec						

agosto/2006

		Total Mês	Total Mês	SOPRO		INJEÇÃO	
		(min)	(horas)	(min)	%	(min)	%
1	Queda de Energia						
2	Falta de Matéria Prima no Almoxarifado	1639	27	0		1639	100,0%
4	Manutenção Preventiva Geral						,
5	Troca de Molde / Produção	7394	123	54	0,7%	7340	99,3%
6	Teste de produtos	27664	461	390	1,4%	27274	98,6%
7	Testes de Matéria Prima				,		,
8	Testes de Máquina / Molde	1440	24	0		1440	100,0%
9	Troca de Côr	237	4	0		237	100,0%
13	Aguardando Ordem de Produção	115264	1921	110302	95,7%	4962	4,3%
3	Manutenção Preventiva Diária - Engraxar		-		,		,
17	Trabalhando c/ Cavidades a Menos	24038	401	21	0.1%	24017	99,9%
50	Troca de Faca	24	0	24	100,0%	0	
51	Regulagem da Faca de Corte	33	1	33	100,0%	0	
52	Regulagem do Parison	55	1	48	87,3%	7	12,7%
53	Regulagem Geral	12413	207	1433	11,5%	10980	88,5%
54	Regulagem de Pino de Sopro	376	6	376	100,0%	0	00,070
55	Falta de Matéria Prima no Funil	421	7	31	7,4%	390	92,6%
56	Mat-Prima Diferente do padrão / Contaminado	800	13	195	24,4%	605	75,6%
57	Regulagem nos Automatismos / Robot	2587	43	0	21,170	2587	100,0%
58	Amolar / Regular a Bucha de Corte	165	3	165	100,0%	0	100,070
59	Limpeza de Macho e Bucha	65	1	65	100,0%	0	
60	Limpeza do Cabeçote / Canhão	152	3	00	100,070	152	100,0%
61	Falta de Colaborador	102	<u> </u>	0		132	100,070
62	Início de Produção - 2ª Feira	5030	84	530	10,5%	4500	89,5%
63	Limpeza do Molde	5576	93	0	10,576	5576	100,0%
64	Desentupir Cavidades	896	15	0		896	100,0%
65	Desenroscar Capilar	5757	96	0		5757	100,0%
-	•	3086	51	0		3086	100,0%
66 67	Desenroscar Tampas / Frascos do Molde Limpeza de Final de Turno	2742	46	254	9,3%	2488	90,7%
68	- '	2142	40	254	9,3%	2400	90,7 %
69	Falta de Haste de Faca						
	Falta de Placa Celeron	4981	83	220	4,4%	4761	95,6%
72 74	Regulagem de Início de Produção	1279	21			1239	-
76	Desentupir Bico / Canal	395	7	40 0	3,1%	395	96,9%
77	Desentupir Pé do Funil	1454	24	0			100,0%
	Troca do Bico da Injetora	28			100.00/	1454	100,0%
78	Manutenção da Haste da Faca de Corte	20	0	28	100,0%	0	
89	Máquina Parada p/ Falta de Conhecimento Técnico	1.15	0	0		4.45	400.00/
98	Diferença de Informações	145	2	0	40.50/	145	100,0%
100	Manutenção Corretiva - Mecânica	9268	154	1811	19,5%	7457	80,5%
101	Manutenção Corretiva - Elétrica	4395	73	180	4,1%	4215	95,9%
103	Manutenção Corretiva no Molde	21377	356	0		21377	100,0%
104	Manutenção nos Periféricos / Robots	2113	35	0		2113	100,0%
105	Manutenção no Cilindro de Aciont. de Faca						
107	Manutenção na Bomba Hidráulica Principal	1					
111	Manutenção Bloco Comando de Válvula (Hidr.)	1					
112	Manutenção Bloco Comando de Válvula (Pneu)						
114	Manutenção ou Troca de Mangueira Hidráulica	45	1	0		45	100,0%
123	Esperando Mecânico Disponível	313	5	0		313	100,0%
126	Manutenção de Geladeira						100.55
127	Manutenção das Esteiras Transportadoras	75	1	0		75	100,0%
131	Manutenção do Cilindro do Canhão	370	6	0		370	100,0%
133	Manutenção nas Portas das Máquinas						
137	Manutenção nos Alimentadores de Mat. Prima	1					
145	Manutenção no Cilindro de Calibração	170	3	170	100,0%	0	
209	Troca ou Reparo de Sensor Indultivo						
210	Troca ou Reparo Resistência do Canhão						
215	Manutenção de Túnel de Resfriamento						
224	Manutenção Programador Lauditec						

setembro/2006

		Total Mês	Total Mês	SOPRO		INJEÇÃO	
		(min)	(horas)	(min)	%	(min)	%
1	Queda de Energia	10	0	10	100,0%	0	
2	Falta de Matéria Prima no Almoxarifado	2228	37	2128	95,5%	100	4,5%
4	Manutenção Preventiva Geral						
5	Troca de Molde / Produção	7145	119	1110	15,5%	6035	84,5%
6	Teste de produtos	12749	212	1876	14,7%	10873	85,3%
7	Testes de Matéria Prima	102	2	0		102	100,0%
8	Testes de Máquina / Molde						,
9	Troca de Côr	637	11	121	19,0%	516	81,0%
13	Aguardando Ordem de Produção	54572	910	50706	92,9%	3866	7,1%
3	Manutenção Preventiva Diária - Engraxar	20	0	0	,	20	100,0%
17	Trabalhando c/ Cavidades a Menos	29321	489	1631	5,6%	27690	94,4%
50	Troca de Faca	106	2	106	100,0%	0	,
51	Regulagem da Faca de Corte	332	6	332	100,0%	0	
52	Regulagem do Parison	521	9	486	93,3%	35	6,7%
53	Regulagem Geral	14201	237	6256	44,1%	7945	55,9%
54	Regulagem de Pino de Sopro	825	14	806	97,7%	19	2,3%
55	Falta de Matéria Prima no Funil	131	2	23	17,6%	108	82,4%
56	Mat-Prima Diferente do padrão / Contaminado	1540	26	1319	85,6%	221	14,4%
57	Regulagem nos Automatismos / Robot	3203	53	115	3,6%	3088	96,4%
58	Amolar / Regular a Bucha de Corte	521	9	521	100,0%	0	30,470
59	Limpeza de Macho e Bucha	374	6	374	100,0%	0	
60	Limpeza de Macrio e Buerla Limpeza do Cabeçote / Canhão	1441	24	1193	82,8%	248	17,2%
61	Falta de Colaborador	1441	24	1193	02,070	240	17,270
62	Início de Produção - 2ª Feira	3550	59	930	26,2%	2620	73,8%
63	Limpeza do Molde	5709	95	200	3,5%	5509	96,5%
64	Desentupir Cavidades	1701	28	0	3,370	1701	100,0%
65	Desenroscar Capilar	6434	107	155	2,4%	6279	97,6%
	'	6251	107	44	0,7%	6207	
66 67	Desenroscar Tampas / Frascos do Molde Limpeza de Final de Turno	4494	75	684	15,2%	3810	99,3% 84,8%
68	'	4494	75	004	13,276	3010	04,0%
69	Falta de Haste de Faca						
	Falta de Placa Celeron	4074	60	1219	29,9%	2855	70,1%
72 74	Regulagem de Início de Produção	2996	68 50	0	29,976		
	Desentupir Bico / Canal	-	5	38	12 70/	2996	100,0%
76	Desentupir Pé do Funil	278 245	4	0	13,7%	240	86,3%
77	Troca do Bico da Injetora	243	4	U		245	100,0%
78	Manutenção da Haste da Faca de Corte						
89	Máquina Parada p/ Falta de Conhecimento Técnico	700	40	400	C4 20/	205	20.70/
98	Diferença de Informações	763	13	468	61,3%	295	38,7%
100	Manutencão Corretiva - Mecânica	930	16	0	0.00/	930	100,0%
101	Manutenção Corretiva - Elétrica	3465	58	101	2,9%	3364	97,1%
103	Manutenção Corretiva no Molde	36459	608	1442	4,0%	35017	96,0%
104	Manutenção nos Periféricos / Robots	1246	21	0		1246	100,0%
105	Manutenção no Cilindro de Aciont. de Faca	040	4			040	400.007
107	Manutenção na Bomba Hidráulica Principal	210	4	0		210	100,0%
111	Manutenção Bloco Comando de Válvula (Hidr.)	400		400	400.00/		
112	Manutenção Bloco Comando de Válvula (Pneu)	100	2	100	100,0%	0	
114	Manutenção ou Troca de Mangueira Hidráulica						
123	Esperando Mecânico Disponível	40	1	0		40	100,0%
126	Manutenção de Geladeira	56	1	0		56	100,0%
127	Manutenção das Esteiras Transportadoras	789	13	789	100,0%	0	
131	Manutenção do Cilindro do Canhão						
133	Manutenção nas Portas das Máquinas						
137	Manutenção nos Alimentadores de Mat. Prima	60	1	60	100,0%	0	
145	Manutenção no Cilindro de Calibração	ļ					
209	Troca ou Reparo de Sensor Indultivo						
210	Troca ou Reparo Resistência do Canhão	100	2	100	100,0%	0	
215	Manutenção de Túnel de Resfriamento						
224	Manutenção Programador Lauditec	I			1		

outubro/2006

		Total Mês	Total Mês	SOPRO		INJEÇÃO	
		(min)	(horas)	(min)	%	(min)	%
1	Queda de Energia						
2	Falta de Matéria Prima no Almoxarifado	2767	46	2767	100,0%	0	
4	Manutenção Preventiva Geral	21	0	0	,	21	100,0%
5	Troca de Molde / Produção	8140	136	1256	15,4%	6884	84,6%
6	Teste de produtos	20712	345	11341	54,8%	9371	45,2%
7	Testes de Matéria Prima	953	16	283	29,7%	670	70,3%
8	Testes de Máquina / Molde						,.,.
9	Troca de Côr	798	13	131	16,4%	667	83,6%
13	Aguardando Ordem de Produção	64257	1071	60908	94.8%	3349	5,2%
3	Manutenção Preventiva Diária - Engraxar	122	2	0	0 1,070	122	100,0%
17	Trabalhando c/ Cavidades a Menos	20817	347	340	1,6%	20477	98,4%
50	Troca de Faca	96	2	96	100,0%	0	00,170
51	Regulagem da Faca de Corte	294	5	294	100,0%	0	
52	Regulagem do Parison	422	7	422	100,0%	0	
53	Regulagem Geral	9553	159	2787	29,2%	6766	70,8%
54	Regulagem de Pino de Sopro	532	9	532	100,0%	0	70,070
55	Falta de Matéria Prima no Funil	225	4	205	91,1%	20	8,9%
56	Mat-Prima Diferente do padrão / Contaminado	728	12	343		385	52,9%
57		2462	41		47,1%		
	Regulagem nos Automatismos / Robot			81	3,3%	2381	96,7%
58	Amolar / Regular a Bucha de Corte	20	0	20	100,0%	0	45.00/
59	Limpeza de Macho e Bucha	363	6	308	84,8%	55	15,2%
60	Limpeza do Cabeçote / Canhão	1452	24	1312	90,4%	140	9,6%
61	Falta de Colaborador	1050		005	04.70/	0004	70.00/
62	Início de Produção - 2ª Feira	4259	71	925	21,7%	3334	78,3%
63	Limpeza do Molde	6874	115	250	3,6%	6624	96,4%
64	Desentupir Cavidades	793	13	0		793	100,0%
65	Desenroscar Capilar	4696	78	61	1,3%	4635	98,7%
66	Desenroscar Tampas / Frascos do Molde	4643	77	53	1,1%	4590	98,9%
67	Limpeza de Final de Turno	4357	73	685	15,7%	3672	84,3%
68	Falta de Haste de Faca					_	
69	Falta de Placa Celeron	7	0	0		7	100,0%
72	Regulagem de Início de Produção	3643	61	1072	29,4%	2571	70,6%
74	Desentupir Bico / Canal	1438	24	0		1438	100,0%
76	Desentupir Pé do Funil	257	4	0		257	100,0%
77	Troca do Bico da Injetora	338	6	0		338	100,0%
78	Manutenção da Haste da Faca de Corte	394	7	394	100,0%	0	
89	Máquina Parada p/ Falta de Conhecimento Técnico	72	1	0		72	100,0%
98	Diferença de Informações	1359	23	772	56,8%	587	43,2%
100	Manutenção Corretiva - Mecânica	3854	64	1007	26,1%	2847	73,9%
101	Manutenção Corretiva - Elétrica	5471	91	2040	37,3%	3431	62,7%
103	Manutenção Corretiva no Molde	21271	355	299	1,4%	20972	98,6%
104	Manutenção nos Periféricos / Robots	815	14	0		815	100,0%
105	Manutenção no Cilindro de Aciont. de Faca	20	0	20	100,0%	0	
107	Manutenção na Bomba Hidráulica Principal	1279	21	0		1279	100,0%
111	Manutenção Bloco Comando de Válvula (Hidr.)	240	4	0		240	100,0%
112	Manutenção Bloco Comando de Válvula (Pneu)	428	7	428	100,0%	0	
114	Manutenção ou Troca de Mangueira Hidráulica	88	1	88	100,0%	0	
123	Esperando Mecânico Disponível	379	6	0	,	379	100,0%
126	Manutenção de Geladeira	468	8	0		468	100,0%
127	Manutenção das Esteiras Transportadoras	364	6	344	94,5%	20	5,5%
131	Manutenção do Cilindro do Canhão	5135	86	0	,	5135	100,0%
133	Manutenção nas Portas das Máquinas	30	1	0		30	100,0%
137	Manutenção nos Alimentadores de Mat. Prima	190	3	190	100,0%	0	, . , .
145	Manutenção no Cilindro de Calibração	4375	73	4375	100,0%	0	
209	Troca ou Reparo de Sensor Indultivo	208	3	208	100,0%	0	
210	Troca ou Reparo Resistência do Canhão	200			100,070	-	
215	Manutenção de Túnel de Resfriamento	54	1	0		54	100,0%
					i		1 100,070

novembro/2006

		Total Mês	Total Mês	SOPRO		INJEÇÃO	
		(min)	(horas)	(min)	%	(min)	%
1	Queda de Energia						
2	Falta de Matéria Prima no Almoxarifado	2767	46	2767	100,0%	0	
4	Manutenção Preventiva Geral	21	0	0	,	21	100,0%
5	Troca de Molde / Produção	8140	136	1256	15,4%	6884	84,6%
6	Teste de produtos	20712	345	11341	54,8%	9371	45,2%
7	Testes de Matéria Prima	953	16	283	29,7%	670	70,3%
8	Testes de Máquina / Molde				,		-,
9	Troca de Côr	798	13	131	16,4%	667	83,6%
13	Aguardando Ordem de Produção	64257	1071	60908	94,8%	3349	5,2%
3	Manutenção Preventiva Diária - Engraxar	122	2	0	, , , , , , ,	122	100,0%
17	Trabalhando c/ Cavidades a Menos	20444	341	293	1,4%	20151	98,6%
50	Troca de Faca	106	2	96	90,6%	10	9,4%
51	Regulagem da Faca de Corte	294	5	294	100,0%	0	-,
52	Regulagem do Parison	422	7	422	100,0%	0	
53	Regulagem Geral	9512	159	2787	29,3%	6725	70,7%
54	Regulagem de Pino de Sopro	532	9	532	100,0%	0	. 6,. 76
55	Falta de Matéria Prima no Funil	225	4	205	91,1%	20	8,9%
56	Mat-Prima Diferente do padrão / Contaminado	728	12	343	47,1%	385	52,9%
57	Regulagem nos Automatismos / Robot	2462	41	81	3,3%	2381	96,7%
58	Amolar / Regular a Bucha de Corte	20	0	20	100,0%	0	00,770
59	Limpeza de Macho e Bucha	363	6	308	84,8%	55	15,2%
60	Limpeza do Macrie o Bacria Limpeza do Cabeçote / Canhão	1452	24	1312	90,4%	140	9,6%
61	Falta de Colaborador	1402	24	1012	30,470	140	3,070
62	Início de Produção - 2ª Feira	4259	71	925	21,7%	3334	78,3%
63	Limpeza do Molde	6874	115	250	3,6%	6624	96,4%
64	Desentupir Cavidades	784	13	0	3,070	784	100,0%
65	Desenroscar Capilar	4696	78	61	1,3%	4635	98,7%
66	Desenroscar Tampas / Frascos do Molde	4643	77	53	1,1%	4590	98,9%
67	Limpeza de Final de Turno	4357	73	685	15,7%	3672	84,3%
68	Falta de Haste de Faca	4337	73	000	13,770	3072	04,570
69	Falta de Placa Celeron	7	0	0		7	100,0%
72	Regulagem de Início de Produção	3643	61	1072	29,4%	2571	70,6%
74	Desentupir Bico / Canal	1438	24	0	23,470	1438	100,0%
76	Desentupir Pé do Funil	257	4	0		257	100,0%
77	Troca do Bico da Injetora	338	6	0		338	100,0%
78	Manutenção da Haste da Faca de Corte	394	7	394	100,0%	0	100,070
89	Máquina Parada p/ Falta de Conhecimento Técnico	72	1	0	100,070	72	100,0%
98	Diferença de Informações	1359	23	772	56,8%	587	43,2%
100	Manutenção Corretiva - Mecânica	3854	64	1007	26,1%	2847	73,9%
101	Manutenção Corretiva - Elétrica	5471	91	2040	37,3%	3431	62,7%
103	Manutenção Corretiva no Molde	21234	354	299	1,4%	20935	98,6%
104	Manutenção nos Periféricos / Robots	815	14	0	1,470	815	100,0%
105	Manutenção no Cilindro de Aciont. de Faca	20	0	20	100,0%	0	100,070
107	Manutenção na Bomba Hidráulica Principal	1279	21	0	100,070	1279	100,0%
111	Manutenção Bloco Comando de Válvula (Hidr.)	240	4	0		240	100,0%
112	Manutenção Bloco Comando de Válvula (Pneu)	428	7	428	100,0%	0	100,076
114	Manutenção ou Troca de Mangueira Hidráulica	88	1	88	100,0%	0	
123	Esperando Mecânico Disponível	379	6	0	100,076	379	100,0%
126		468	8	0			
127	Manutenção de Geladeira Manutenção das Esteiras Transportadoras	364	6	344	94,5%	468 20	100,0% 5,5%
131	Manutenção do Cilindro do Canhão	5135	86	0	∂ 1 ,∂/0	5135	100,0%
133	Manutenção nas Portas das Máquinas	30	1	0		30	100,0%
137	Manutenção nos Alimentadores de Mat. Prima	190	3	190	100,0%	0	100,0%
145	Manutenção no Cilindro de Calibração	4375	73	4375	100,0%	0	
209	Troca ou Reparo de Sensor Indultivo	208	3	208	100,0%		
209		200	<u> </u>	200	100,0%	0	
215	Troca ou Reparo Resistência do Canhão Manutanção do Túnel do Restriamento	E /	1	0		5.1	100.00/
215	Manutenção de Túnel de Resfriamento	54 263	1 4	0 263	100.00/	54	100,0%
224	Manutenção Programador Lauditec	203	+	203	100,0%	0	

dezembro/2006

		Total Mês	Total Mês	SOPRO		INJEÇÃO	
		(min)	(horas)	(min)	%	(min)	%
1	Queda de Energia						
2	Falta de Matéria Prima no Almoxarifado	2838	47	1886	66,5%	952	33,5%
4	Manutenção Preventiva Geral						,
5	Troca de Molde / Produção	5303	88	35	0,7%	5268	99,3%
6	Teste de produtos	9171	153	0	,	9171	100,0%
7	Testes de Matéria Prima	-					
8	Testes de Máquina / Molde						
9	Troca de Côr	604	10	36	6,0%	568	94,0%
13	Aguardando Ordem de Produção	277830	4631	112898	40,6%	164932	59,4%
3	Manutenção Preventiva Diária - Engraxar	15	0	0	10,070	15	100,0%
17	Trabalhando c/ Cavidades a Menos	27420	457	1847	6,7%	25573	93,3%
50	Troca de Faca				5,. 75	200.0	00,070
51	Regulagem da Faca de Corte	92	2	92	100,0%	0	
52	Regulagem do Parison	198	3	198	100,0%	0	
53	Regulagem Geral	10051	168	2147	21,4%	7904	78,6%
54	Regulagem de Pino de Sopro	197	3	197	100,0%	0	70,070
55	Falta de Matéria Prima no Funil	466	8	75	16,1%	391	83,9%
56	Mat-Prima Diferente do padrão / Contaminado	794	13	180	22,7%	614	77,3%
57	Regulagem nos Automatismos / Robot	4016	67	145	3,6%	3871	96,4%
58	Amolar / Regular a Bucha de Corte	31	1	31	100,0%	0	30,470
59	Limpeza de Macho e Bucha	470	8	470	100,0%	0	
60	'	35	1	0	100,0%	35	100,0%
61	Limpeza do Cabeçote / Canhão Falta de Colaborador	555	9	0		555	100,0%
62	Início de Produção - 2ª Feira	2416	40	608	25,2%	1808	74,8%
63	· · · · · · · · · · · · · · · · · · ·	5514	92	15	0,3%	5499	99,7%
64	Limpeza do Molde	950	16	0	0,3%	950	
	Desentupir Cavidades	6184	103	15	0.20/		100,0% 99,8%
65	Desenroscar Capilar	4052			0,2%	6169	
66	Desenroscar Tampas / Frascos do Molde		68	0	0.40/	4052	100,0%
67	Limpeza de Final de Turno	2200	37	185	8,4%	2015	91,6%
68	Falta de Haste de Faca	1					
69	Falta de Placa Celeron	4000	00	704	45.00/	4070	05.00/
72	Regulagem de Início de Produção	4800	80	721	15,0%	4079	85,0%
74	Desentupir Bico / Canal	1565	26	0		1565	100,0%
76	Desentupir Pé do Funil	64	4	0		0.4	400.00/
77	Troca do Bico da Injetora	64	1	0		64	100,0%
78	Manutenção da Haste da Faca de Corte						
89	Máquina Parada p/ Falta de Conhecimento Técnico	0.40	4	50	00.40/	400	70.00/
98	Diferença de Informações	242	4	56	23,1%	186	76,9%
100	Manutenção Corretiva - Mecânica	1164	19	0	5.00 /	1164	100,0%
101	Manutenção Corretiva - Elétrica	2376	40	138	5,8%	2238	94,2%
103	Manutenção Corretiva no Molde	26427	440	1066	4,0%	25361	96,0%
104	Manutenção nos Periféricos / Robots	716	12	0		716	100,0%
105	Manutenção no Cilindro de Aciont. de Faca						
107	Manutenção na Bomba Hidráulica Principal						
111	Manutenção Bloco Comando de Válvula (Hidr.)						
112	Manutenção Bloco Comando de Válvula (Pneu)	168	3	0		168	100,0%
114	Manutenção ou Troca de Mangueira Hidráulica						
123	Esperando Mecânico Disponível	449	7	0		449	100,0%
126	Manutenção de Geladeira						
127	Manutenção das Esteiras Transportadoras	589	10	574	97,5%	15	2,5%
131	Manutenção do Cilindro do Canhão						
133	Manutenção nas Portas das Máquinas						
137	Manutenção nos Alimentadores de Mat. Prima						
145	Manutenção no Cilindro de Calibração						
209	Troca ou Reparo de Sensor Indultivo	137	2	137	100,0%	0	
210	Troca ou Reparo Resistência do Canhão						
215	Manutenção de Túnel de Resfriamento						Ι Τ
	, , , , , , , , , , , , , , , , , , , ,						

ANEXO A – Organograma Geral da Empresa

Auxiliar Financeiro Administrativo / Financeiro Encarregado Financeiro Recepcionista Contabilidade Técnico de Segurança Recursos Humanos Assistentes de RH Gerente de RH Zeladoras Auxiliares de Produção Gerente Decoração Operadores de Máquina Chefe de Tumo Encarregado de Manutenção Auxiliar de Manutenção Técnicos de Manutenção Assistente de Produção Encarregado Produção Operadores de Máquina Produção **ORGANOGRAMA GERAL** Supervisor Tecnico de Produção Auxliares de Produção Gerente Produção Diretor Geral Encarregado de Compras Encarregado Ferramentaria Tecnicos de Ferramentaria técnicos Auxiliar de Ferramentaria Encarregado de PCL Encarregado de Expedição Assistente de PCL Supply Chain Auxiliar de Almoxarifado e Expedição Almoxarife Analista da Qualidade Analista de Produtos Gerente Qualidade Assistente Técnico Qualidade Desenhista Projetista Gerente de P & D Desenvolvimento Assistente Comercial Gerente Comercial Comercial

ANEXO B – Lista de Equipamentos

MANDIANA AMAGENIANIA PROCESSOR MODELO CAPACIDADA PROCESSOR MODELO TOTAL PROCESSOR ANDIA PROCESSOR														
NOSE LINCT NUMEÇÃO FRADORO 29 1989 1989 1989 450 2	MÁQUINA	FABRICANTE		PROCESSO		CIA	ANO FAB.	AQUISIÇÃO	ROSCA	Р	CAPACIDADE INJEÇÃO/SOPRO	DISTÂNCIA HORIZONTAL ENTRE COLUNAS	ALTURA VERTICAL ENTRE COLUNAS	ABERTURA
NASSEL 140T NALEÇÃO FRADORO 66 1697 1696 469 20 20 2066m/30 460 460 NASSEL 1487 INASSEL 1540 FRADORO 64 1597 1597 50 20 20 20 20 40 20	103	MG	100T	INJEÇÃO	TPO100	25	1990	1997	45	20				
NASSEL 100T NASSEL 100T	106	NISSEI	140T	INJEÇÃO	FN3000	09	1998	1998	45	20	286cm3	480	480	250~850
NASEL LOST INSEÇA 1997 1997 1997 1997 69 20 2054 6564 69 79 79 79 79 79 79 79 70	107	NISSEI	180T	INJEÇÃO	FN4000	84	1997	1997	20	20	403cm3	530	530	250~950
SANDRETO 165T NLEÇÃO 165 36,1 1989 1989 1989 459 23,3 318 mm3 460 SANDRETO 165T NLEÇÃO 165 36,1 1989 1989 45 23,6 318 mm3 460 7 SANDRETO 220T NLEÇÃO 220 44,1 1989 1989 45 25,6 326mm3 460 7 NISSEI 220T NLEÇÃO PRODO 62 1986 2004 45 25 356mm3 560 7 NISSEI 140T NLEÇÃO PRODO 62 1986 2002 62 2004 45 26 86 20 20 86 20 20 20 86 20 20 86 <td>108</td> <td>NISSEI</td> <td>220T</td> <td>INJEÇÃO</td> <td>FN5000</td> <td>98</td> <td>1997</td> <td>1997</td> <td>26</td> <td>20</td> <td>554cm3</td> <td>290</td> <td>290</td> <td>290~1050</td>	108	NISSEI	220T	INJEÇÃO	FN5000	98	1997	1997	26	20	554cm3	290	290	290~1050
SANDRETO 165T INLEÇÃO 166 35.1 1898 46 25.6 3516m3 460 87 SANDRETO 220T INLEÇÃO 220 44.1 1998 1698 46 25.6 366m3 510 STORCK 200T INLEÇÃO PR20O 50 2003 2004 45 25.6 366m3 510 510 NSSEI 140T INLEÇÃO PR20O 60 2002 46 20 256m3 560 50 NECRI BOSSI 230T INLEÇÃO PR60O 73 2005 2005 200 50 200 560 50 <td>109</td> <td>SANDRETO</td> <td>165T</td> <td>INJEÇÃO</td> <td>165</td> <td>35,1</td> <td>1998</td> <td>1998</td> <td>45</td> <td>23,3</td> <td>318cm3</td> <td>460</td> <td>460</td> <td>155~1060</td>	109	SANDRETO	165T	INJEÇÃO	165	35,1	1998	1998	45	23,3	318cm3	460	460	155~1060
SYNDREIO 220T NA-GAÓ 220 44,1 1988 1988 45 256 386em3 510 510 STORCK 200T INJEGÁO PP200 50 2003 2004 45 20 447cm3 560<	110	SANDRETO	165T	INJEÇÃO	165	35,1	1998	1998	45	23,3	318cm3	460	460	155~1060
STORCK ZOOT INJEÇÃO FROOD GO 2003 ATTOMAS 477 mas 560 ATTOMAS 660 ATTOMAS 660 ATTOMAS 660 ATTOMAS 660 ATTOMAS ATTOMAS 660 ATTOMAS ATTOMAS <td>111</td> <td>SANDRETO</td> <td>220T</td> <td>INJEÇÃO</td> <td>220</td> <td>44,1</td> <td>1998</td> <td>1998</td> <td>45</td> <td>25,6</td> <td>366cm3</td> <td>510</td> <td>510</td> <td>210~1180</td>	111	SANDRETO	220T	INJEÇÃO	220	44,1	1998	1998	45	25,6	366cm3	510	510	210~1180
NISSEI 140T INLEÇÃO FNS000 62 1986 2002 46 20 286m3 480 480 NESREI 220T INLEÇÃO VS 230-820 42 1987 2002 56 20 564m3 590 NEGRI BOSSI 230T INLEÇÃO VS 300-1460 50 2006 60 20 680m3 630 570 NEGRI BOSSI 300T INLEÇÃO VS 300-1460 50 2006 200 60 20 860m3 630 570 NEGRI BOSSI 300T INLEÇÃO VS 300-1460 50 2006 60 20 860m3 630 570 NEGRI BOSSI 300T INLEÇÃO VS 300-1460 50 2006 20 860m3 630 830 NEGRI BOSSI 300T INLEÇÃO VS 300-1460 50 2006 20 860m3 630 830 KRAUSS MAFFEI 160T NINLEÇÃO VA 300-1400C 45 2007	112	STORCK	200T	INJEÇÃO	P200	50	2003	2004			477cm3	560	260	250~1050
NISSEI Z20T INJEÇÃO FN6000 78 1997 2002 56 60 5544m3 590 NEGRI BOSSI 230T INJEÇÃO VS 230-820 42 2005 2005 200 4800m3 570 700 NEGRI BOSSI 300T INJEÇÃO VS 300-1450 50 2005 60 20 8600m3 630 570 NEGRI BOSSI 300T INJEÇÃO VS 300-1450 50 2005 60 20 8600m3 630 570 NEGRI BOSSI 300T INJEÇÃO VS 300-1450 50 2005 60 20 8600m3 630 570 NEGRI BOSSI 300T INJEÇÃO VS 300-1450 50 2005 20 20 8600m3 630 570 KRAUSS MAFFEI 160T INJEÇÃO VK 160-750CX 22 2006 22 22 22 4800m3 630 KRAUSS MAFFEI 300T INJEÇÃO KM 160-750CX 22	113	NISSEI	140T	INJEÇÃO	FN3000	62	1996	2002	45	20	286cm3	480	480	250~850
NEGRI BOSSI 230T INJEÇÃO VS 230-450 42 2005 2004 50 480cm3 570 NEGRI BOSSI 300T INJEÇÃO VS 300-1450 60 2005 2005 60 20 860cm3 630 7 NEGRI BOSSI 300T INJEÇÃO VS 300-1450 50 2005 60 20 860cm3 630 630 NEGRI BOSSI 300T INJEÇÃO VS 300-1450 50 2005 60 20 860cm3 630 630 NEGRI BOSSI 300T INJEÇÃO VS 300-1450 50 2005 2005 60 20 860cm3 630	114	NISSEI	220T	INJEÇÃO	FN5000	78	1997	2002	26	20	554cm3	290	290	290~1050
NEGRI BOSSI 300T INJEÇÃO VS 300-1450 50 2005 60 20 850cm3 630 NEGRI BOSSI 300T INJEÇÃO VS 300-1450 50 2005 2005 60 20 850cm3 630 630 NEGRI BOSSI 300T INJEÇÃO VS 300-1450 50 2005 2005 60 20 850cm3 630 630 630 NEGRI BOSSI 300T INJEÇÃO VS 300-1450 42 2005 206 60 20 850cm3 630 <td>115</td> <td>NEGRI BOSSI</td> <td>230T</td> <td>INJEÇÃO</td> <td>VS 230-820</td> <td>42</td> <td>2005</td> <td>2004</td> <td>52</td> <td>20</td> <td>480cm3</td> <td>570</td> <td>510</td> <td>200~630</td>	115	NEGRI BOSSI	230T	INJEÇÃO	VS 230-820	42	2005	2004	52	20	480cm3	570	510	200~630
NECRI BOSSI 300T INJEÇÃO VS 300-1450 50 2005 60 20 850cm3 630 NEGRI BOSSI 300T INJEÇÃO VS 300-1450 50 2005 60 20 850cm3 630 NEGRI BOSSI 300T INJEÇÃO VS 300-1450 50 2005 2005 60 20 850cm3 630 KRAUSS MAFFEI 160T INJEÇÃO VS 300-1450 42 2005 2005 52 20 480cm3 570 KRAUSS MAFFEI 160T INJEÇÃO KM 160-750CX 22 2006 45 224 318cm³ 520 50 KRAUSS MAFFEI 300T INJEÇÃO KM 300-1400C2 45 2007 2007 56 21 610 630 PUGLIESE 300T INJEÇÃO KM 300-1400C2 45 2007 2007 60 21 610 610 61 61 61 61 61 61 61 61 61	116	NEGRI BOSSI	300T	INJEÇÃO	VS 300-1450	90	2005	2005	09	20	850cm3	630	920	250~700
NEGRI BOSSI 300T INJEÇÃO VS 300-1450 50 2005 2005 60 20 860cm3 630 NEGRI BOSSI 300T INJEÇÃO VS 300-1450 50 2005 2005 60 20 860cm3 630 KRAUSS MAFFEI 160T INJEÇÃO VS 230-820 42 2005 2005 52,4 318cm³ 520 570 KRAUSS MAFFEI 160T INJEÇÃO KM 300-1400C2 45 2007 2007 55 22,4 318cm³ 520 570 520	117	NEGRI BOSSI	300T	INJEÇÃO	VS 300-1450	90	2005	2005	09	20	850cm3	630	929	250~700
NEGRI BOSSI 300T INJEÇÃO VS 230-820 420 2005 2005 620 60 850cm3 630 KRAUSS MAFFEI 100T INJEÇÃO VS 230-820 42 2006 2006 45 22,4 318cm³ 570 570 KRAUSS MAFFEI 300T INJEÇÃO KM 160-7560CX 22 2006 2006 45 22,4 318cm³ 520 50	118	NEGRI BOSSI	300T	INJEÇÃO	VS 300-1450	20	2005	2005	09	20	850cm3	630	570	250~700
KRAUSS MAFFEI 100T INJEÇÃO KM 160-750CX 22 2006 45 22.4 480cm3 570 70 KRAUSS MAFFEI 160T INJEÇÃO KM 160-750CX 45 2007 2007 55 22.4 318cm³ 520 50 KRAUSS MAFFEI 300T INJEÇÃO KM 300-1400C2 45 2007 2007 60 21 670 cm³ 630 50 VRAUSS MAFFEI 300T INJEÇÃO KM 300-1400C2 45 2007 2007 60 21 670 cm³ 630 50 PUGLIESE SOPRO PAC-1 12 1991 45 20 11 7 12 1994 75 14 7 21 7 12 10 7 12 10 1	119	NEGRI BOSSI	300T	INJEÇÃO	VS 300-1450	20	2005	2005	09	20	850cm3	630	929	250~700
KRAUSS MAFFEI 160T INJEÇÃO KM 160-750CX 22 2006 45 22,4 318cm³ 520 KRAUSS MAFFEI 300T INJEÇÃO KM 300-1400C2 45 2007 56 23 570 cm³ 630 KRAUSS MAFFEI 300T INJEÇÃO KM 300-1400C2 45 2007 2007 60 21 679 cm³ 630 PUGLIESE SOPRO PAC-1 12 1987 45 20 1L 7 1 BATTENFELD SOPRO UNILOY MSB/D 88 1997 7 2 7 1 2 7 1 7 1 1 2 1 <td>120</td> <td>NEGRI BOSSI</td> <td>230Т</td> <td>INJEÇÃO</td> <td>VS 230-820</td> <td>42</td> <td>2005</td> <td>2005</td> <td>52</td> <td>20</td> <td>480cm3</td> <td>570</td> <td>510</td> <td>200~630</td>	120	NEGRI BOSSI	230Т	INJEÇÃO	VS 230-820	42	2005	2005	52	20	480cm3	570	510	200~630
KRAUSS MAFFEI 300T INJEÇÃO KM 300-1400C2 45 2007 2007 65 21 670 cm³ 630 KRAUSS MAFFEI 300T INJEÇÃO 45 2007 2007 60 21 679 cm³ 630 7 PUGLIESE SOPRO PAC-1 12 1987 A5 20 1L 8 7 BATTENFELD SOPRO BPS 2D 75 1998 A5 20 1L 2L 7 SEMERARO SOPRO UNILOY MSB/D 88 1997 A5 A5 A5 A5 A5 A5 A5 A6 A5	121	KRAUSS MAFFEI		INJEÇÃO	KM 160-750CX	22	2006	2006	45	22,4	318cm³	520	520	300-950
KRAUSS MAFFEI 300T INJEÇÃO KM 300-1400C2 45 2007 60 21 679 cm³ 630 PUGLIESE SOPRO PAC-1 12 1987 45 20 1L 20 1 BATTENFELD SOPRO BPS 2D 75 1998 75 1997 7 2L 7 1 SEMERARO SOPRO UNILOY MSB/D 88 1997 7 2L 2 7 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 3 3 4 3 4 <td< td=""><td>122</td><td>KRAUSS MAFFEI</td><td></td><td></td><td>KM 300-1400C2</td><td>45</td><td>2007</td><td>2007</td><td>25</td><td>23</td><td>570 cm³</td><td>630</td><td>630</td><td>330-1150</td></td<>	122	KRAUSS MAFFEI			KM 300-1400C2	45	2007	2007	25	23	570 cm³	630	630	330-1150
PUGLIESE SOPRO PAC-1 12 1987 45 20 PUGLIESE SOPRO PAC-1 12 1991 45 20 BATTENFELD SOPRO BPS 2D 75 1998 75 20 SEMERARO SOPRO UNILOY MSB/D 88 1997 7 7 SEMERARO SOPRO UNILOY 49 1998 7 7	123	KRAUSS MAFFEI			KM 300-1400C2	45	2007	2007	09	21	679 cm³	630	630	330-1150
PUGLIESE SOPRO PAC-1 12 1991 45 20 BATTENFELD SOPRO BPS 2D 75 1998 R 7 SEMERARO SOPRO UNILOY MSB/D 88 1997 R R SEMERARO SOPRO UNILOY 49 1998 R R	3	PUGLIESE		SOPRO	PAC-1	12	1987		45	20	11			
BATTENFELD SOPRO BPS 2D 75 1998 PR PR <td>5</td> <td>PUGLIESE</td> <td></td> <td>SOPRO</td> <td>PAC-1</td> <td>12</td> <td>1991</td> <td></td> <td>45</td> <td>20</td> <td>11</td> <td></td> <td></td> <td></td>	5	PUGLIESE		SOPRO	PAC-1	12	1991		45	20	11			
SEMERARO SOPRO UNILOY MSB/D 88 1997 Proprior SEMERARO SOPRO UNILOY 49 1998 Proprior	7	BATTENFELD		SOPRO	BPS 2D	75	1998				2L			
SEMERARO SOPRO UNILOY 49 1998	80	SEMERARO			UNILOY MSB/D	88	1997				2L			
	6	SEMERARO		SOPRO	UNILOY	49	1998				2L			6
														7

-	-		٦
(٦	2	۹

ANEXO C – Exemplo da Planilha de Produtividade Diária

Cym	CNGIF	cón	OHIGOGG	COMPL	O VOI I I I I I I I I I I I I I I I I I	TEÓDICA*	*(0)	740	DEJEIOÃO	0/ 001	COMPL	*0*0	COME	***************************************	ALC:U	OTOLO	TOOGG	ODGEDVACORE
Ľ	-	-		4	4		-	-	200		470	4					/80 0	0105
2		999,99,9	908 04 3 Et II Colletions 250 ml Vocado (MODIEICADO)	410	1 740	2 111	00,05		33	1 81%	260	Aguardando Ordem de Produção	20	Domington do Infoio do Desdunão	30 0%	(104)	31 0%	
	7 (6,10,002	FI. C. Solditoris 230 IIII - Verde (MODIFICADO)	0	0+7:1	7.1.1			70 -0	2/10/1		_	n O	zánnala na millian na Linanna		(+01)	0,0,10	
	ო	208,01,3	208,01,3 Fr. U. Solutions 250 ml - Verde (MODIFICADO)	503	3.326	2.856	20,00 20,00	4	3 3	1,04%	223	Aguardando Ordem de Produção			-1,0%	132	55,1%	
ŀ				1440	3.000	4.96/	- 1		٥/	%۲۶,۱	1.012				%J'08	77,60	12,7%	
က	-	182,01,1	Fr. Natura Shampoo/Condicionador- 200 ml	470		1.498		1			`	Regulagem de Início de Produção			-100,0%	(263)	%0'0	
	2	182,01,1		467	1.652	1.489	16,00 16,00	1	20	1,20%		Regulagem Geral			-2,7%	29	94,3%	
	ო	182,01,1	Fr. Natura Shampoo/Condicionador- 200 ml	503	1.653	1.603	16,00 16,00	1	06	5,16%		Regulagem do Parison	10	Regulagem da Faca de Corte	-12,4%	6	%9'28	
				1440	3.305	4.590			110	3,22%	529				61,2%	-225,31	61,2%	
7	1	226,01,1	Fr. Miniatura M e B 15ml - Natural	470	1.017	864	16,90 17,00	9 0	10	0,97%	422	Aguardando Ordem de Produção			0,1%	24	10,2%	
	2	226,01,1	Fr. Miniatura M e B 15ml - Natural	467	10.020	8.406	16,70 17,00	9 0	6	0,09%	2	Regulagem Geral			1,3%	250	101,3%	
	в	226,01,1	Fr. Miniatura M e B 15ml - Natural	503	10.600	9.054	17,00 17,00	9 0	09	0,56%					-0,5%	240	%5'66	
				1440	21.637	18.324			79	0,36%	424				100,4%	513,52	71,0%	
80	1	6'66'666	Máquina Parada	470			1,00	1 1			470	Aguardando Ordem de Produção					%0'0	
	7	6'66'666	Máquina Parada	467			1,00	1 1			467	Aguardando Ordem de Produção					%0'0	
	က	6'66'666	Máquina Parada	503			1,00	0 1		7000	503	Aguardando Ordem de Produção				0	%0'0	
σ	,	10001		24	64	1010	04 00 40 00		30	75 770	1				07 58/	200	7,0,0	
0	- ‹	2,10,001		5 5	7 000	124.2			2 5	20,1170		nfay.	8		.97,5%	(300)		
	2	188,01,2		467	1.296	2.406		0	23	3,93%			53	Regulagem Geral	-54,2%	(240)		
	ო	188,01,2	Fr. Frasnaga - Interage - 100 ml (1x2)	503 1440	3.397	2.591	19,80 19,80		130 208	6,04% 5 78%	854	Manutenção nos Rebarbadores	09	Regulagem do Parison	-33,6% 38 9 %	(123)	66,4% 38.9%	
103	-	680 01 1	Fenátula Ohranos 500	470	12.536	10.152	18.00 20.00	α		31.0					11 1%	119	111 1%	
-		1000		2 5	10.040	1000			8	ò	5	-			2 2	2 0	2 2	
	Ν (680,01,1		46/	10.816	10.087			92	0,84%	12	Regulagem Geral			-3,5%	30	%6'96	
	າ	080,01,1	Espatula Chronos 50g	500	012.010	10.865	20,00 20,00		£ ;	0,37%	,				%C'O-) c	%2'88	
				1440	35.362	31.104			137	0,39%	12				102,3%	212,90	102,3%	
113		6'66'666	Máquina Parada	470			1,00	1			470	Manutencão Corretiva - Mecânica					%0'0	
	2	6'66'666	Máquina Parada	467			1,00	1			467	Manutencão Corretiva - Mecânica					%0'0	
	က	6'66'666	Máquina Parada	503			1,00	1				Manutencão Corretiva - Mecânica					%0'0	
				1440						%00'0	1.440					0,00	%0'0	
114		590,01,1	Sobre Tampa Accordes 80 ml	470	6.210	5.206			49	0,78%					7,4%	374	107,4%	
	2	590,01,1	Sobre Tampa Accordes 80 ml	467	5.890	5.173			65	1,09%		18 lesenroscar Tampas / Frascos do Molc			2,5%	267	102,5%	
	က	590,01,1	Sobre Tampa Accordes 80 ml	503	5.400	5.572	36,10 39,00	8 0	25.56	1,03%	8 7	Manutenção Corretiva no Molde			-12,8%	(64)	87,2%	
3	1			1440	000:71	13.931			2	0,36%					90,1%	3/1,00	90,7%	
901		604,02,1		470	1.584	1.991			89	4,12%	09	Manutenção de Geladeira	17	Limpeza do Molde	-28,4%	(236)	%9'1/2	
	7	604,02,1		46/	1.846	1.978			66	2,09%		22 lesenroscar Tampas / Frascos do Molc			-16,0%	(1)	84,0%	
	ო	604,02,1	Tampa Kryska Laranja	1440	2.106 5.536	2.130 6.099	54,90 51,00	4	60 227	2,77% 3,94 %	12	8 lesenroscar Tampas / Frascos do Molc			-11,0% 81,7%	(14) -326,48	89,0% 81,7%	
107	-	592,06,1	Tampa Poetry 50 ml - Laranja (Tua Graça)	186	1.760	1.922	45,00 41,80		32	1,79%	6	Limpeza do Molde	6	Limpeza do Molde	-17,6%	(28)	32,6%	
	2	592,07,1	Tampa Poetry 50 ml - Vinho (Amor Total)	467	4.846	4.826	45,80 41,80		48	0,98%					%9'6-	7	90,4%	
	ღ	592,07,1	Tampa Poetry 50 ml - Vinho (Amor Total)	503	5.184	5.198	45,90 41,80	8 0			7	7 lesenroscar Tampas / Frascos do Molc			-10,3%	(2)	%2'68	
				1156	11.790	11.947			8	0,67%	22				88,88	-56,26	71,3%	
112		6'66'666		470			1,00	1 1			470	Manutencão Corretiva - Mecânica					%0'0	
	2	6'66'666	Máquina Parada	467			1,00	1			467	Manutencão Corretiva - Mecânica					%0'0	
	ო	6'66'666	Máquina Parada	503			1,00	1		0	503	Manutencão Corretiva - Mecânica					%0'0	
				1440			- 1			0,00%	1.440					0,00	%0'0	
109		608,01,5		470	7.300	7.124			30	0,41%	28				-7,8%	29	92,2%	
	2	608,01,5		467	7.976	7.079			45	0,52%	26	Trabalhando c/ Cavidades a Menos			1,4%	146	101,4%	
	က	608,01,5	Inserto Renew Bco Metalizado (Luminosity)	503	9.200	7.624	26,20 28,50	8	° ¦	0,03%					8,6%	256	108,6%	
				1440	24.476	77.87/			િ	0,31%	8				100,9%	430,16	100,9%	

GLOSSÁRIO

Benchmarking

Contempla uma abordagem comparativa praticada entre empresas concorrentes e as líderes do mercado. Seu propósito é estimular a melhoria de desempenho das organizações através de pesquisa que permite identificar um melhor desempenho e alcançar maior vantagem competitiva.

Cronoanálise

Utiliza a cronometragem como ferramenta e apura melhor a medição do tempo real para a indicação do tempo previsto, ou seja, com o tempo medido, avaliando estatisticamente o número de medições bem como o grau de confiabilidade. Á aplicado na coordenação e controle da produção, formulação de tabelas de tempos padrão, além de indicar os potenciais de racionalização e balanceamento de linhas produtivas.

Feeling

Expressão utilizada para demonstrar uma certa habilidade adquirida através da experiência de vivência.

Mix (de produtos)

Proporção de produtos individuais, que permite realizar a totalidade da produção ou o volume de vendas.

Lead Time

Tempo decorrido entre a constatação de uma necessidade da emissão de uma ordem e o recebimento dos produtos necessitados e que compreende tempos como: tempo de preparação, tempo de fila, tempo de processamento, tempo de movimentação e transporte e tempo de recebimento e inspeção.

Setup

Trabalho necessário para se mudar uma máquina específica, recurso, centro de trabalho e/ou linha de produção, do término da última peça da produção A até a primeira peça da produção B.

Taylorista

Refere-se ao modelo de administração desenvolvido por Frederick W. Taylor (1856-1915), considerado o pai da administração científica.

Tempo Calendário

Corresponde ao tempo real, contínuo (horas, dias, meses, anos).

Universidade Estadual de Maringá Departamento de Informática Curso de Engenharia de Produção Av. Colombo 5790, Maringá-PR CEP 87020-900

Tel: (044) 3261-4324 / 4219 Fax: (044) 3261-5874